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Summary

The circulation of zoonotic influenza A viruses including pH1N1 2009 and H5N1

continue to present a constant threat to animal and human populations. Recently,

an H3N2 variant spread from pigs to humans and between humans in limited

numbers. Accordingly, this research investigated a range of scenarios of the trans-

mission dynamics of pH1N1 2009 virus at the swine–human interface while

accounting for different percentages of swine workers initially immune. Further-

more, the feasibility of using NAADSM (North American Animal Disease Spread

Model) applied as a one-health simulation model was assessed. The study popula-

tion included 488 swine herds and 29, 707 households of people within a county

in Ontario, Canada. Households were categorized as follows: (i) rural households

with swine workers, (ii) rural households without swine workers, and (iii) urban

households without swine workers. Forty-eight scenarios were investigated, based

on the combination of six scenarios around the transmissibility of the virus at the

interface and four vaccination coverage levels of swine workers (0–60%), all under

two settings of either swine or human origin of the virus. Outcomes were assessed

in terms of stochastic ‘die-out’ fraction, size and time to peak epidemic day, over-

all size and duration of the outbreaks. The modelled outcomes indicated that

minimizing influenza transmissibility at the interface and targeted vaccination of

swine workers had significant beneficial effects. Our results indicate that NA-

ADSM can be used as a framework to model the spread and control of contagious

zoonotic diseases among animal and human populations, under certain simplify-

ing assumptions. Further evaluation of the model is required. In addition to these

specific findings, this study serves as a benchmark that can provide useful input to

a future one-health influenza modelling studies. Some pertinent information gaps

were also identified. Enhanced surveillance and the collection of high-quality

information for more accurate parameterization of such models are encouraged.

Introduction

The on-going threat of an influenza pandemic emerging in

people was highlighted with the novel pandemic H1N1

influenza virus (pH1N1) in 2009. The pH1N1 was first

reported in March to April of 2009 in Mexico, and spread

rapidly across the world (Centers for Disease Control and

Prevention (CDC), 2009; Fraser et al., 2009; WHO, 2009).

By 11 June 2009, a full-scale pandemic was declared by the

World Health Organization (WHO, 2009). Molecular

analyses showed that the virus was genetically similar to

contemporary viruses circulating in swine, based on live-

stock surveillance data in different continents (Garten

et al., 2009; Smith et al., 2009). However, the origin of the
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virus and the exact host species involved in the reassort-

ment remains unknown.

The first detection of pH1N1 in swine was reported from

the province of Alberta, Canada in May of 2009 (OIE,

2009). It was introduced into the herd by an employee (i.e.

human to animal spread of pH1N1), who had recently

returned from a vacation in Mexico (Howden et al., 2009).

Swine-to-swine transmission of pH1N1 was subsequently

demonstrated in several experimental (Itoh et al., 2009;

Lange et al., 2009; Vincent et al., 2010; Brookes et al.,

2010) and observational studies (Howden et al., 2009;

Lange et al., 2009; Pasma and Joseph, 2010). By April of

2010, 20 different countries had reported outbreaks of

pH1N1 in swine (Hofshagen et al., 2009; OIE, 2009–2010;
Moreno et al., 2010; Pasma and Joseph, 2010; Pereda et al.,

2010; Song et al., 2010; Sreta et al., 2010; Welsh et al.,

2010; Forgie et al., 2011). Although the respective sources

of many of these outbreaks remain unknown, some were

confirmed (Norway, in addition to Canada), or were sus-

pected (Finland, Iceland and Russia) of having involved

human-to-swine transmission (Hofshagen et al., 2009;

Howden et al., 2009; Forgie et al., 2011). In the light of

these reports of pH1N1 outbreaks in swine in several coun-

tries, it is surprising that no studies have reported either

temporal or temporo-spatial spread of the virus between

swine farms (Dorjee et al., 2013a; Torremorell et al., 2012).

Immediately after the reported outbreaks of pH1N1 in

swine in Canada, restrictions on the export of live pigs and

pork were imposed by several countries (Lynn, 2009; Reu-

ters, 2009). Even without significant documented spread of

pH1N1 from swine to humans, the social and economic

consequences arising from the subsequent trade restrictions

were devastating. Accordingly, zoonotic influenza A viruses

are of interest to animal and public health authorities, given

their significant implications for public health, animal

health and trade.

Influenza pandemics remain a major zoonotic threat to

mankind, occurring over intervals of one to four decades

since 1918 (Brown, 2000; Ma et al., 2009; Zimmer and

Burke, 2009). Since the first report of transmission of the

H1N1 1918 virus from humans to pigs (Shope, 1931), the

transmission of influenza A viruses back and forth between

people and swine has been well documented (Hinshaw

et al., 1978; Easterday, 1980; Dacso et al., 1984; Myers

et al., 2007). There is much evidence of reassortments of

swine, human and avian influenza viruses occurring in pigs

in Europe (Brown et al., 1998) and in North America

(Zhou et al., 1999; Karasin et al., 2000; Lekcharoensuk

et al., 2006; Olsen et al., 2006). The transmission of influ-

enza viruses from pigs to people has been reported in a

number of studies (Brown, 2000; Myers et al., 2007; Robin-

son et al., 2007; Ma et al., 2009; Zimmer and Burke, 2009).

Recently, the transmission of the H3N2 variant from

pigs-to-humans, and a subsequent limited spread between

humans, was reported in the US (Lindstrom et al., 2012).

Based on the findings of this study, swine should be consid-

ered potential hosts for the emergence of novel pandemic

influenza strains. Cross-sectional serological studies found

that those employed in occupations involving direct con-

tact with pigs (e.g. swine farmers, veterinarians, abattoir

workers) are at higher risk of zoonotic influenza infection.

Swine farmers are relatively at higher risk than veterinarians

and abattoir workers (Olsen et al., 2002; Myers et al.,

2006). The shift to large-scale swine operations involving

frequent restocking of young susceptible pigs has facilitated

the persistence of influenza viruses in herds (Vincent et al.,

2008; Gray and Baker, 2011). The persistent transmission

pressure between swine and those working with pigs in

commercial enterprises increases the opportunity for zoo-

notic spread of novel influenza viruses (Myers et al., 2006).

This being the case, it is important to understand the trans-

mission dynamics of influenza at the swine–human inter-

face, to devise intervention strategies.

Recently, mathematical models and simulation tools

have been developed to study the spread and control of

influenza among human (Longini et al., 2004, 2005; Flaha-

ult et al., 2009; Gojovic et al., 2009) and avian (Le Menach

et al., 2006; Guberti et al., 2007; Tiensin et al., 2007) popu-

lations. A small number of studies have investigated the

spread of influenza from birds to birds and from birds to

humans (Arino et al., 2007; Iwami et al., 2007; Kim et al.,

2010), whereas to the best of our knowledge, only one

study investigated the spread of influenza within and

between swine and human populations simultaneously

(Saenz et al., 2006).

Given, (i) the impact of influenza on human health and

the economy, (ii) the importance of swine in the generation

of novel influenza viruses, and (iii) the utility of models in

providing a better understanding of disease transmission

and control dynamics; it is imperative to investigate key

parameters influencing the spread and the effectiveness of

mitigation strategies against influenza at the swine–human

interface through simulating a range of possible scenarios.

Such information can be used to guide the development of

contingency measures to prevent and control the emer-

gence of future influenza pandemics.

Different types of models, ranging from simple deter-

ministic differential equation model (also referred to as sys-

tem dynamic/compartmental or mathematical model)

(Mills et al., 2004; Arino et al., 2008; Brauer, 2008) to com-

plex stochastic agent/individual-based models (microsimu-

lation models) (Germann et al., 2006; Carpenter and

Sattenspiel, 2009; Lee et al., 2010a; Yang et al., 2009; Tsai

et al., 2010) are used for different diseases in human and

animal populations. Some individual-based models also

incorporate contact network (Ajelli and Merler, 2008;
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Davey et al., 2008; Chao et al., 2010) and spatial locations

explicitly (Sanson, 1993; Morris et al., 2002; Garner and

Beckett, 2005; Harvey et al., 2007; Patyk et al., 2013; Ste-

venson et al., 2013). For detail review of modelling

approaches in animals and humans, readers can refer to the

following references (Kao, 2002; Keeling, 2005; Dorjee

et al., 2013a). A number of computer software have been

developed to implement microsimulation models to assess

the spread and control of highly contagious animal dis-

eases, such as AusSpread (Garner and Beckett, 2005), Inter-

Spread Plus (Stevenson et al., 2013) and NAADSM (Harvey

et al., 2007; NAADSM Development Team, 2008). To date,

these tools have been used to model single or multiple live-

stock species but have not attempted to incorporate spread

between domestic animal and human populations. Most

published models used to study spread of diseases among

domestic livestock populations use the herd, rather than

the individual animal, as the unit of interest. In contrast,

most models used to study influenza spread among people

use the individual, rather than the household or group of

people as the unit of interest. However, a few studies in

humans have investigated the spread and control of influ-

enza at the individual household level (Wu et al., 2006;

Fraser, 2007; Shaban et al., 2009). The NAADSM disease

modelling framework was originally developed to accom-

modate different parameters of disease spread between dif-

ferent types of livestock herds or flocks (e.g. dairy cattle,

versus beef cattle, versus swine, versus sheep versus goats in

the spread of foot and mouth disease) (Harvey et al.,

2007). While the concept of using NAADSM to model

households of people as a type of ‘herd’ was not originally

envisioned in development, it was subsequently proposed

by McNab (McNab 2009, personal communication). This

approach provided the opportunity to model the interface

of the spread and control of zoonotic diseases within and

between groups of animals and people under certain sim-

plifying assumptions.

The overall objective of this study was to identify the

relative importance of disease transmission parameters

affecting the spread and control of contagious pathogens

shared between people and swine, using influenza as an

example. Specific objectives included: (i) investigation of

the feasibility of using NAADSM as a tool to model the

spread and control of zoonotic diseases; (ii) a study of the

transmission dynamics of influenza at the swine–human

interface using characteristics of pH1N1 as an example;

and (iii) an investigation of the utility of applying targeted

vaccination against influenza at the animal–human inter-

face. We chose to use pH1N1 as our example of zoonotic

pathogen due to the fact that: (i) it is readily transmissible

between humans, swine, and human and swine popula-

tions, (ii) information about the biology of this virus is rel-

atively abundant, and (iii) there were several questions

arising from pH1N1 concerning its dynamics at the

human–swine interface.

Materials and Methods

Study area and populations

A county within the province of Ontario, Canada with a

relatively high density of swine farms along with the exis-

tence of a range of rural and urban areas (one small city

and four towns) was selected for this study. The following

spatially explicit units were included as ‘production types’

in the models: (i) swine herds (SH), (ii) rural households

with at least one swine worker (SWH), (iii) rural house-

holds with no swine workers (RH), and (iv) urban house-

holds without swine workers (UH). Swine workers

(owners/managers/labourers of swine farms) served as the

bridging population for pH1N1 transmission between

swine and human populations. Population data to ensure a

representative mixture of each type of unit within the

model were extracted from the 2006 official census of Sta-

tistics Canada (Statistics Canada, 2007c,f). A total of 488

SH with 664 508 pigs were recorded in the census year of

2006 for the county. As only the aggregate number of SH

and pigs were available at the census consolidated subdivi-

sion level, the number of animals per farm in the model

was generated using a uniform distribution with minimum

and maximum values of 500 and 2500 animals, respectively,

(� 4 standard deviation from a mean of approximately

1500 animals). The number of SWH was approximately 1.5

times the number of SH, based on the data for swine opera-

tors and agricultural labourers (general figure not reported

by enterprise type) recorded in the 2006 official census. A

total of 25 297 people in 8612 rural households were

reported in this county. Therefore, an appropriate number

of RH (7879) was generated by subtracting the number of

SWH (733) from the total rural households. The numbers

of UH and people recorded in the five urban areas were as

follows: City A – 13 316 households with 30 461 people;

Town B – 2733 households with 6617 people; Town C –
2731 households with 6303 people; Town D – 1714 house-

holds with 4220 people; and Town E – 601 households with
1446 people. A Poisson distribution with a mean of three

and truncated at two and seven for SWH (Statistics

Canada, 2007b), and one and six for RH and UH were

assumed for the number of people living in each household

as per the census record (Statistics Canada, 2007e). The

final study population units and respective unit sizes are

presented in Table 1.

Swine farm and household locations

Digital vector maps delineating the boundaries of rural and

urban areas of this county were obtained from Statistics
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Canada (Statistics Canada, 2007a,d). As the specific geo-

graphic coordinates of SH, SWH and RH were not available

in the official census data, their locations were randomly

distributed spatially within the agricultural areas of the

county using a Geographic Information System. A mini-

mum distance of one kilometre was specified between

swine herds. Swine-worker household locations of owners/

managers and labourers were generated within the radii of

100–300 and 300–500 metres of SH, respectively. Although

some swine workers stay in towns, it was done to restrict

the contact of a SWH to a specific farm for all iterations.

This was achieved by also specifying the maximum contact

distance between SWH and SH to 0.5 km. RH locations

were generated randomly in agricultural polygons with the

additional constraint that they must be outside a 500 m

radius of any SH and at least a distance of 10 m away from

any other household. Similarly, locations of UH were ran-

domly distributed within the five urban boundaries, speci-

fying a minimum distance of 10 m between any two

households. All spatial data manipulation and random spa-

tial locations were generated using Quantum GIS (QGIS)

version 6.1.0 (Open Source Geospatial Foundation Project.

http://qgis.osgeo.org).

Model structure

North american animal disease spread model (NAADSM)

The supercomputer version of the NAADSM 3.1.24

(NAADSM Development Team, 2008) was used for the con-

struction and simulation of models for pH1N1 spread in

swine and human populations. The NAADSM is an agent-

based platform that simulates the spread of diseases in pop-

ulations using stochastic, spatially explicit, state-transition

methods. The epidemiological unit of interest within

NAADSM is an aggregation of animals managed together

as a single unit at a single geographic location, typically as

herd or flock. The platform was developed to simulate the

spread and control of contagious animal diseases (e.g. foot

and mouth disease) between spatially explicit groups of

animals, either of the same or different species and produc-

tion types. It is flexible in the manner in which users can

define the spread of a disease between different pairs of

units (e.g. dairy cattle to beef cattle; swine farrowing opera-

tion to swine grower/finisher operations, etc.). It models

disease transmission between farms by direct contact

(through movement of live animals between farms), indi-

rect contact (through the movement of people and contam-

inated fomites) as well as airborne and local area spread.

The local area spread feature enables to specify other mech-

anisms of disease spread locally through insects, pests,

spread between animals of two adjacent farms across the

fence and lapses in biosecurity measures (Reeves et al.,

2012). It has provisions to quantify the predicted number

of infected places arising from a number of different disease

intervention strategies, such as quarantine and movement

control, vaccination, depopulation and zoning. Each unit is

initially assigned attribute data, including: a unique unit

ID; the type of unit (e.g. dairy, beef, swine, etc.); number of

animals in that unit; location of the unit (i.e. point geo-

coordinates in longitude and latitude); and disease transi-

tion state. A detailed description of NAADSM has been

provided by Harvey et al. (2007) and Hill and Reeves

(2006).

Disease states

A susceptible-exposed-infectious-recovered (SEIR) model

structure was used for each of the types of epidemiological

units of interest described in this study. Susceptible units

were herds or households susceptible to infection but not

infected; exposed/latent units were those that had been

infected but were not shedding organisms; infectious units

were units shedding organisms, while recovered units were

those that had recovered and were immune to further

infection. The unit-level latent period was assumed equal

to the time from the first individual within the unit became

infected to the time when the first individual transited to

the infectious state. The unit remained in the infectious

state from the time when the first individual within the unit

became infectious to the time until the last individual in

that unit transited to the recovered state. Therefore, the

unit-level latent period was equal to the duration of indi-

vidual-level latent state, whereas a unit-level clinical infec-

tious period varied with the size of the infected unit.

Following infection, a susceptible unit transited through

the subsequent disease states beginning on the day

following infection in a cyclic fashion in the absence of any

Table 1. Description of study populations and probability density func-

tions of the size of units used for the simulation of influenza spread

between swine and human populations in a country of Ontario, Canada

Population units

Total no.

of units

Distribution of size

of units

Total

no. of

individuals

Swine herds (SH) 488 Uniform

(min = 500;

max = 2500)

733 107

Swine-worker

households (SWH)

733 Truncated Poisson

(mean = 3, min = 2;

max = 7)

2325

Rural non-swine-

worker-households

(RH)

7879 Truncated Poisson

(mean = 3, min = 1;

max = 6)

25 521

Urban households(UH) 21 095 Truncated Poisson

(mean = 3, min = 1;

max = 6)

54 038

Total 30 195 814 991
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intervening control measures, such as vaccination or

depopulation. The duration of each of these disease states

for any particular unit type was either based on a fixed

value or was chosen stochastically from the defined proba-

bility distribution as described in the model parameters

section below. Permanent immunity was simulated by

setting a naturally immune duration which exceeded the

duration of the simulated period (365 days).

Disease transmission

To investigate the transmission dynamics of pH1N1

between swine and human populations, its spread was sim-

ulated between different combinations of pairs of unit types

as follows: (i) amongst swine herds (SH to SH), (ii)

between SH and SWH, and (iii) among SWH, RH and UH,

simultaneously. The influenza transmission among swine

herds was simulated by both direct and indirect contacts,

while the spread between SH and SWH, and among house-

holds occurred only through direct contact. A latently

infected SH unit was also assumed infectious to other sus-

ceptible SH units by direct contact as shipment of latently

infected pigs to susceptible units would most likely result in

transmission of infection. In all other cases only the infec-

tious units would transmit the infection to the susceptible

units. For the disease spread from SH to SWH and vice

versa, direct contacts were assumed to have occurred when

the swine workers came in contact with pigs on farms (SH)

during the course of their daily work. To ensure that each

SWH was assigned to a specific farm throughout the simu-

lation, a movement distance restriction zone of uniform

distribution between 100 and 500 m was created as per the

synthetically generated locations of SWH described above.

For influenza spread among households, a direct contact

was assumed to have occurred implicitly when an individ-

ual from an infectious household established contact with

individuals at any place, such as schools, workplaces or

other areas where individuals congregate. Individuals who

become infected as a result of contact with an infectious

person outside their home could, in turn, infect individuals

within their home and outside of their home. Similar

assumptions have been made in modelling influenza spread

at the household level (Wu et al., 2006; Fraser, 2007; Sha-

ban et al., 2009). The influenza transmissions between

infectious and susceptible units through direct and indirect

contacts were simulated as a function of contact rate, the

probability of infection per contact and movement distance

distribution between the units.

Model parameters

Duration of disease states

Parameters for both the individual- and unit-level duration

of the different disease states for swine and human popula-

tions are presented in Tables 2 and 3 respectively. The indi-

vidual level parameters for swine and human populations

were extracted from the published literature (references are

Table 2. Parameters and their probability density functions for swine farms used in the simulation of influenza spread between swine and human

populations in a county of Ontario, Canada

Input parameters Individual Herd level References

Latent period (day) 1a Fixed value of 1b a(Brookes et al., 2010; Lange et al., 2009; Vincent et al., 2010);

Subclinical infectious (day) 0–6a BetaPERT(0, 3, 6)b bGenerated from the individual-level parameters using WH 0.9.5 software†;

Clinical infectious (day) 1–15a BetaPERT (5; 25;45)b c(Blaskovic et al., 1970; Desrosiers et al., 2004);

Immune period (day) 365–840c Fixed value 366d dAssumed permanent immunity by using a value greater than the duration of

the simulation period (365 days)

†WH 0.9.5 is the software that simulate within-herd disease transmission stochastically and generates herd-level durations of disease states

(A. Reeves, M. Talbert, M. D. Salman, and A. E. Hill, submitted). Parameters were extracted from the references with the same superscripts.

Table 3. Parameters and their probability density functions for households used in the simulation of influenza spread between swine and human

populations in a county of Ontario, Canada

Input parameters Individual Household References

Latent period (day) 1–3a BetaPERT (1, 2, 3)b a(Pourbohloul et al., 2009; Bo€elle et al., 2009; Tuite et al., 2010);

Subclinical infectious (day) 0–3a BetaPERT (0, 2, 3)b bGenerated from the individual-level parameters using WH 0.9.5 software†;

Clinical infectious (day) 4–10a BetaPERT (4, 12, 20)b cAssumed permanent immunity by using a value greater than the duration of

the simulation period (365 days)

Immune period (day) – Fixed value of 366c

†WH 0.9.5 is the software that simulate within-herd disease transmission stochastically and generates herd-level durations of disease states

(A. Reeves, M. Talbert, M. D. Salman, and A. E. Hill, submitted). Parameters were extracted from the references with the same superscripts.
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provided in tables). As no information on clinical infectious

period existed at the herd or household levels, they were

generated from the individual-level parameters using the

WithinHerd (WH-within-herd disease spread model) soft-

ware version 0.9.5 (A. Reeves, M. Talbert, M. D. Salman,

and A. E. Hill, submitted). This is a stochastic modelling

framework that simulates the within-unit disease spread

and generates the unit-level durations of disease states. The

same swine and household populations were used for the

within-unit influenza spread simulations. A BetaPERT dis-

tribution (which was the best fitting probability distribu-

tion for clinical infectious duration based on the outputs of

the within-herd transmission model) based on the mini-

mum, mode and maximum values of 100 iterations of the

within-unit spread models of swine herd (except for latent

period for which a fixed value of 1 day was assumed) or

household populations were then used for NAADSM mod-

els. The durations of immunity period for SH and house-

holds were assumed to be permanent as immunity to

specific strain of influenza viruses are long lasting.

Contact frequencies

Daily direct and indirect contact frequencies among SH

were extracted from the published and unpublished sources

(Table 4). Data on how frequently pairs of different

household population types contact each other were not

available. Therefore, assumptions based on the informed

judgement of the co-authors were made. These assump-

tions, along with the average daily individual contact

frequency of 13.5, extracted fromMossong et al. (2008) and

Lee et al. (2010a), were used to derive the mean daily con-

tact rate between different pairs of the population types

(Table 4). As SWH and RH were in rural communities, only

half the individual daily contact frequency noted previously

was used here. Co-authors also discussed and used their best

judgement to specify the movement distance distributions

between source and recipient units for all populations.

Disease transmission probabilities

In general, it is difficult to measure the transmission proba-

bility per contact, and therefore, it is mostly derived from

calibrating models to match either the cumulative number

of cases or R0 (basic reproductive number) of on-going or

historical outbreaks (Saenz et al., 2006; Rahmandad and

Sterman, 2008; Vynnycky and White, 2010). Given an R0, a

contact rate (C) and an average duration of infectiousness

of totally susceptible individuals (D), transmission proba-

bility per contact (P), which is the probability that infection

will be transferred between an infected and a susceptible

units given an adequate contact has been made can be

Table 4. Contact structure and influenza transmission parameters used in the simulation of influenza spread between swine and human populations

in a county of Ontario, Canada

Contact type

Mean

contacts/

day

Distance distribution of

recipient units (km)

Probability of

infection (Low/

medium/high) References

Swine to swine a(Christensen et al., 2008; Bates et al., 2001) and unpublished data

from Ontario Veterinary College;
bAssumption based on the informed judgement of co-authors;
cAssumed based on based on experimental studies

(Brookes et al., 2010; Lange et al., 2009; Vincent et al., 2010);
dBases on the assumptions explained in the main text;
eAssumed once/week based on the informed judgement of co-authors

and multiplied by half the individual contact rate from Lee et al.

(2010a) and Mossong et al. (2008);
fDerived from R0 value of pH1N1 2009 as explained the text;
gAssumed five times/week based on the informed judgement of

co-authors and multiplied by half the individual contact rate from

Lee et al. (2010a) and Mossong et al. (2008);
hAssumed once/year based on the informed judgement of co-authors

and multiplied by the individual contact rate from Lee et al. (2010a)

and Mossong et al. (2008);
iAssumed twice/year based on the informed judgement of co-authors

and multiplied by the individual contact rate from Lee et al. (2010a)

and Mossong et al. (2008);
jBased on the individual contact rate from Lee et al. (2010a) and

Mossong et al. (2008)

SH-SH (Direct

contact)

0.06a BetaPERT(0.8, 20, 100)b 1c

SH-SH (Indirect

contact)

0.196a BetaPERT (0.8, 20 100)b 0.01b

Swine to human

SH-SWH 1d Uniform(0.1, 0.5)b (0.024/0.3/1d

Human to swine

SWH–SH 1d Uniform(0.1, 0.5)c (0.024/0.3/1)d

Human to human

SWH-SWH 0.857e BetaPERT(0.5, 20, 100)b (0.024)f

SWH-RH 4.286 g BetaPERT(0.1, 10, 30)b (0.024)f

SWH-UH 0.857e BetaPERT(1, 30, 65)b (0.024)f

RH-SWH 0.857e BetaPERT(0.1, 10, 30)b (0.024)f

RH-RH 4.286 g BetaPERT(0.01, 20, 100)b (0.024)f

RH-UH 0.857e BetaPERT(1, 30, 65)b (0.024)f

UH-SWH 0.036h BetaPERT(1, 30, 65)b (0.024)f

UH-RH 0.071i BetaPERT(1, 30, 65)b (0.024)f

UH-UH 12.893j BetaPERT(0.01, 10, 30)b (0.024)f

SH, Swine herds; SWH, Swine-worker households; RH, Rural non-swine-worker households; UH, Urban households.

Parameters were extracted from the references with the same superscripts.
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derived from the following formula (Rahmandad and Ster-

man, 2008; Vynnycky and White, 2010; Rahmandad et al.,

2011):

R0 ¼ C � P � D:

However, neither an estimate of R0 nor historical data on

influenza spread between farms are available in the litera-

ture. Therefore, for simplicity, transmission probabilities of

100% and 1% were assumed for direct and indirect con-

tacts, respectively. In reality, all other parameters being

equal, the transmission probability among units will vary

depending on the within-unit prevalence and the number

of animals shipped from infected to susceptible farms.

These assumptions may not be unreasonable as within-herd

spread of influenza in swine is known to be rapid and no

immunity is anticipated to exist in na€ıve recipient herds to

a novel strain such as pH1N1.

For spread among households, the transmission proba-

bility per contact (P) was estimated from individual-level

data using the formula provided above. The mean trans-

mission probability and its 95% probability interval were

estimated based on the minimum, most likely and maxi-

mum R0 values of 1.3, 1.5, and 2.2, respectively (Fraser

et al., 2009; Pourbohloul et al., 2009; Tuite et al., 2010),

and corresponding daily contact frequencies of 6.9, 13.1,

and 18.2 (Mossong et al., 2008), and the duration of infec-

tious period of 2, 7, and 10 days, respectively (Pourbohloul

et al., 2009; Yang et al., 2009) using a Monte Carlo simula-

tion of 1000 iterations in the PopTool version 3.2.5 (Micro-

soft Excel add-in program available at www.poptools.org).

An estimated mean of 0.024 with 95% probability interval

0.012–0.048 of transmission probability per contact were

obtained. This estimate was similar to the median value of

0.043 used by Lee et al. (2010a).

Other assumptions made within the model were as fol-

lows: all swine and human populations were totally suscep-

tible to the virus, all populations were closed with no

addition or losses throughout the simulation period (the

mortality of pigs from pH1N1 is negligible [OIE, 2009], and

pH1N1 mortality in humans is < 1%); populations were

homogeneous with random mixing both within and

between groups as defined by the contact structures. In

addition, the disease spread through direct or indirect con-

tacts between our study populations and similar popula-

tions of other counties in the province were not considered.

Scenarios

The transmission dynamics and the extent of spread of

pH1N1 both within and between swine and human popu-

lations were assessed under the two broad scenarios of the

virus origin, from a swine herd or from urban households.

Within each of these broad scenarios, the speed, duration

and magnitude of the disease spread were investigated at

three different levels of the transmissibility (low, medium

and high) at the swine–human interface. Six possible com-

binations of transmissibility of the virus at the swine–
human interface were investigated; (i) low animal to

human – low human to animal (LL), (ii) medium animal

to human – low human to animal (ML), and so forth, as

summarized in Fig. 1. The values used for low (low animal

to human or low human to animal) and high (high animal

to human or high human to animal) transmissibility were

equal to those estimated for human to human

SWH-0%

B. Urban 
households

A. Swine herd

SWH-15%

SWH-30%

SWH-60%

Transmission probability at the swine-
human interface
(Low = 0.024; Medium = 0.3; High = 1.0)

Influenza origin

Low AH – Low HA (LL)

Med. AH – Low HA (ML)

High AH – Low HA (HL)

Med. AH – Med. HA (MM)

High AH – Med. HA (HM)

High AH – High HA (HH)

Percentage of swine-
worker-households 
(SWH) vaccinated

Fig. 1. Graphical description of scenarios used for the simulation of the simultaneous spread of pandemic influenza H1N1 2009 virus between swine

and human populations in a county of Ontario, Canada. AH, animal to human, HA, human to animal, SWH- 0% to 60% refers to the percentage of

swine-worker households vaccinated prior to the disease outbreak with the assumption of a 100% protective effect.
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spread (P = 0.024) and swine to swine spread (P = 1.0),

respectively. A medium transmissibility (medium animal to

human or medium human to animal) of P = 0.3 was used

based on the higher value suggested by Lee et al. (2010a).

Furthermore, each of these scenarios was investigated at

four levels of initially immune SHW population (0%, 15%,

30%, and 60%). It was assumed that all members of the

SHW family have been vaccinated and was 100% immune

to the infection throughout each simulated outbreak. It was

based on the assumption that a limited stockpile of effective

vaccine was available at the very early phase of an outbreak

and assessing the benefit of targeted vaccination of SWH

population. A total of 48 scenarios (6 scenarios of the trans-

missibility of the virus multiplied by four levels of the vac-

cination coverage, all under the two settings of virus

seeding, SH or UH (index case) were investigated(Fig. 1).

In the case where the virus originated in swine herd the

infection was seeded into a single randomly selected SH for

all iterations. For the scenario of virus originating in

human population, it was seeded in five randomly selected

UH for all iterations. Each scenario was simulated over

1000 iterations in time-steps of one day for 365 days.

Statistical analyses

The models’ outcomes were assessed in terms of the param-

eters that were relevant from epidemiological and regula-

tory perspectives. They included: (i) stochastic ‘die-out’

fraction–proportion of iterations that did not result in an epi-
demic outbreak; defined as <1% of units (total populations
combined) becoming infected, (ii) time to peak epidemic
day – day on which a highest number of infectious units
was observed, (iii) epidemic size of a peak day – number of
infectious units observed on the peak epidemic day, (iv) out-
break duration – time to end of an outbreak defined as the
time until no latent or infectious unit was present, or a cut-
off value of 365 days if the outbreak persisted beyond the
simulated time period, and (v) outbreak size – total number
of infected units. Summary statistics associated with these
outcomes (5th, 50th and 95th percentiles of 1000 iterations)
were generated for all scenarios. The cut-point of <1% of
units infected was chosen to define the ‘stochastic die-out’
fraction as the percentage of units infected was >30% in all
other iterations. The effects of the three parameters; (i) ori-
gin of the virus, (ii) transmissibility of the virus at the
swine–human interface, and (iii) vaccination of SWH popu-
lation on the outbreak duration and proportion of units
infected were evaluated by fitting the survival and binomial
logistic regression models, respectively. Fitting the multivar-
iable models allowed for an assessment of interaction effects
between these parameters on the outcomes.

An accelerated failure-time (AFT) survival model (using

the generalized linear model (glm) function with a gamma

distribution) was fitted to the epidemic duration as the out-

come variable, and the three input parameters as predictor

variables. All iterations were considered failed event at the

end of the outbreak duration. All input parameters were

coded as categorical variables. The origin of the virus was

coded as 1 = swine origin (reference category) and

2 = human origin. The transmissibility of the virus at the

interface was coded as 1 = LL (reference category), 2 = ML,

3 = HL, 4 = MM, 5 = HM, and 6 = HH. The vaccination

coverage of SWH was coded as 1 = 0% (reference category),

2 = 15%, 3 = 30%, and 4 = 60%. All two-way interactions

among the predictors were evaluated and retained if signifi-

cant at P < 0.05 and if the relative difference in the pre-

dicted duration of epidemic at any levels of the interaction

terms was greater than one-week duration. This criterion

was used because even a small difference between two inter-

action terms tended to exhibit statistical significance due to

large sample size (each scenario being simulated 1000

times). Akaike Information Criterion (AIC) and Cox–Snell
residual plots were used to select the best fitting AFT para-

metric survival model as well as to evaluate the overall fit of

the model to the data (Dohoo et al., 2009). Residuals were

evaluated using deviance residual and plotting the residuals

against the fitted values or individual predictors.

The effect of the predictors on the size of epidemic was

assessed using logistic regression for binomial data (glm

function with binomial family distribution and logit link).

All predictors were entered into the model as described in

the survival model above. The number of each population

type infected in each scenario was combined together into

single outcome variable, and a variable of the population

type was generated. This variable was coded as 1 = SH,

2 = SWH, 3 = RH, and 4 = UH. This allowed assessing

the effects of the predictors on epidemic size for each of the

population type using a single model. All two-way interac-

tions among the predictors were examined and retained if

they were significant at P < 0.05 and, if the relative differ-

ence in the predicted proportion of units infected at any

levels of the interaction terms was ≥5%. Model diagnostics

and residuals were evaluated based on the deviance chi-

squared test and deviance residuals. Results of the survival

and the binomial logistic regression models are presented

in terms of predicted margins of median epidemic duration

and proportion of units infected at the representative val-

ues of the covariates. All analyses were implemented in Sta-

ta version 12.1 (StataCorp. 2011. Stata Statistical Software:

Release 12. College Station, TX, USA: StataCorp LP).

Results

Stochastic ‘die-out’ fraction

The stochastic nature of the modelling approach used in

this study was reflected not only in the variability of the
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predicted measures, but also by the probability of an

infection dying out without leading to an outbreak, by

chance alone. We observed that 1188 of the 24 000 itera-

tions, equivalent to 5% of the number of simulated influ-

enza outbreaks underwent stochastic ‘die-out’ when the

virus originated in swine. Furthermore, the majority of

the ‘die-out’ iterations (59%) were observed in the LL

scenario amongst the scenarios of the transmissibility of

the virus at the swine–human interface (Fig. 2). Similarly,

among the categories of the vaccination coverage, the

maximum number of ‘die-out’ iterations (42%) occurred

in the 60% vaccination coverage category (Fig. 2). No

such ‘die-out’ was observed when the infection was

seeded into five randomly selected UH (human origin of

the virus).

Peak epidemic day and size

It took approximately 25 days to infect the first UH in the

case of the virus originating in swine population, whereas

it took approximately 45 days to infect the first SH when

the virus originated in the human population. The time to

reach the peak epidemic day and the epidemic size of the

peak day were estimated as the median of 1000 iterations

for each scenario. In general, the delay to peak epidemic

day was shorter, and the epidemic sizes of the peak days

were higher as the transmissibility of the virus at the

swine–human interface increased. In contrast, as the vacci-

nation coverage of SWH increased the delay to peak epi-

demic day was longer, and the epidemic sizes of the peak

days were smaller in both swine herd and household

populations.

As the origin of the virus was directly correlated with

delay to the peak epidemic day and the epidemic size of the

peak day in the corresponding swine herd or household

populations, respectively, we focused our attention on the

effects of the transmissibility of the virus and vaccination

parameters on these outcome measures to the UH origin

for SH population, and SH origin for the household popu-

lations. In the case of SH, the higher transmissibility of the

virus (MM to HH) shortened the delay to peak epidemic

day by 3–5 weeks (15–26% reduction) compared with low

transmissibility (LL to HL) across all levels of vaccination

coverage (Fig. 3). The delay to the peak epidemic days

among LL to HL or MM to HH were practically small (dif-

ference of approximately <1 week i.e. <8% reduction). The

differences in the epidemic sizes of the peak days among

different scenarios of the transmissibility were small (differ-

ence of ≤4 infected units) across all levels of the vaccination

coverage.

Vaccinating 60% of SWH delayed the peak epidemic day

by 2–3 weeks (14–20% longer) when compared to the sce-

nario with no vaccination, in the SH population across all

levels of the transmissibility (Fig. 3). However, the vaccina-

tion coverage up to 30% had only a small effect (<7%
increase in the time to peak epidemic day). The differences

in the epidemic sizes of peak days among various vaccina-

tion coverage levels were small (≤4 units infected).
In the household populations, the delay to peak epidemic

day was longer by approximately 3–6 weeks (15–31%
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Fig. 2. Percentage of iterations with stochastic ‘die-outs’ (<1% of units infected) of 24 scenarios of the simultaneous spread of the influenza (swine

origin) between swine and human populations. These scenarios consisted of combinations of the six levels of transmissibility of the virus at the swine-

human interface and four levels of the vaccination coverage of swine-worker-household population. Each scenario was simulated for 1000 iterations.

Transmissibility abbreviations are outlined in Figure 1.
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longer) when the transmissibility of the virus at the interface

was low (LL) compared with the higher transmissibility

(ML to HH) across all levels of the vaccination (Fig. 4).

This effect was more apparent in the scenario with no vac-

cination. The epidemic size of peak day was lower by 11–22
infected households (a moderate reduction of 7–15%)

when the transmissibility of the virus was low (LL) than at

the higher transmissibility levels (ML to HH).

Vaccinating 60% of the SWH delayed the peak epidemic

day by 2–5 weeks (13–33% longer) and reduced the epi-

demic size on the peak day by 33–37 infected households (a

moderate reduction of 20–22%) when compared with none

were vaccinated. However, the effects of 15% to 30% vacci-

nation coverage on these two outcomes measures were

small (<12% change on the delay time and the epidemic

sizes of the peak days).

Epidemic duration

The overall median (5th and 95th percentiles) epidemic

duration was 308 (261–365) days. The result of the survival
model on the epidemic duration indicated that an AFT

model with gamma distribution fitted the data best. All the

predictors (that is input parameters from the scenarios)

had a significant effect on the epidemic duration. The only

significant interaction observed was between the transmis-

sibility of the virus and the proportion of SWH vaccinated.

The predicted median epidemic duration was 6 days longer

in the case where the virus originated in swine than in

human, at all levels of the transmissibility and the vacci-

nation coverage. Though statistically significant, this

difference was too small to be considered practically

meaningful. The interaction effect between the transmissi-

bility and vaccination was mainly due to the significant

change in the slope (shortening of the epidemic duration)

between low (LL) versus the higher transmissibility (ML to
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Fig. 4. Epidemic curves illustrating the spread of the influenza in the

household population in the case of virus originating in a swine herd

under the different levels of transmissibility of the virus at the interface,

and at two levels of the vaccination coverage of the swine-worker

households (SWH). As the effects of the transmissibility of the virus of

the 15% to 30% vaccination coverage were similar to that of a scenario

when none was vaccinated, only the epidemic curves at 0% and 60%

vaccination coverage are shown. Transmissibility abbreviations are out-

lined in Figure 1.
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Fig. 3. Epidemic curves illustrating the spread of the influenza in the

swine herds (SH) in the case of virus originating in the urban households

under the different levels of transmissibility of the virus at the interface,

and at the two levels of the vaccination coverage of the swine-worker

households (SWH). As the effects of transmissibility at the 15% to 30%

vaccination coverage levels were similar to the scenario when none

was vaccinated, only the epidemic curves at 0% and 60% vaccination

coverage levels are shown. Transmissibility abbreviations are outlined in

Figure 1.
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HH) at the low vaccination coverage (0% to 30%) (Fig. 5).

This means under low vaccination coverage the increase in

the transmissibility of the virus (LL versus ML to HH) will

shorten the epidemic duration relatively more (3–6%
reduction) compared with the vaccination coverage of 60%

(1–3% reduction).

The deviance residuals did not indicate any particular

outlying observation, except for the stochastic ‘die-out’

fraction (1188 iterations). Excluding these iterations

increased the predicted median epidemic duration up to

7% for the origin of the virus and for the interaction term

between the transmissibility and vaccination coverage.

Epidemic size

The overall median (5th–95th percentiles) of infected units

were 83% (67–98%) of SH, 69% (34–99%) of SWH, 54%

(47–58%) of RH, and 35% (34–36%) of UH. The logistic

regression results showed that the effect of the transmissi-

bility and the targeted vaccination of SWH on the epidemic

size depended (significant interaction) on the population

types (Fig. 6). Furthermore, the interaction effect between

the transmissibility and the vaccination on the epidemic

size was significant. The proportion of SH infected was sig-

nificantly higher when the transmissibility of the virus from

human to animal was higher (MM to HH) compared with

when it was low (LL to ML) (Fig. 6a). However, the magni-

tude of the difference was relatively larger (by 9–13%)

at vaccination coverage of 60% compared with coverage of

0–30%. While the vaccination coverage up to 30% caused a

small reduction (1–8%) in the proportion of SH infected,

60% coverage had significant reduction (8–21%), particu-

larly at the low transmissibility of the virus from human to

animal spread (LL to ML) (19–21% reduction).
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Fig. 5. The interaction plot for the transmissibility of the virus at the

interface and the vaccination of the SWH population on the predicted

median epidemic duration for the influenza outbreaks in the case of the

virus originating in a swine herd. The effects were similar in the case of
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Figure 1.
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For the SWH units, a significant difference in the pro-

portion of SWH infected was observed between the low

(LL) versus higher transmissibility (ML to HH) of the virus

(Fig. 6b). Furthermore, this difference was relatively larger

when SWH were vaccinated (15–60%) compared to no

vaccination, a difference of 12–17% versus 4–5%, respec-

tively. Similarly, vaccination reduced the proportion of

SWH infected by 13–68%, with relatively larger reduction

at the low transmissibility of the virus (LL). While the vac-

cination caused a small reduction in the percentage of RH

infected (up to 9% reduction), the transmissibility of the

virus had negligible effect on the proportion of RH and UH

infected (Fig. 6c and d).

The overall goodness-of-fit test of the final model using

deviance chi-squared test showed a significant lack of fit

(P < 0.001) with a deviance over-dispersion parameter of

197.9. Most observations with extreme deviance residuals

were the stochastic ‘die-out’ fraction. Excluding these

observations improved the fit of the model substantially (a

deviance over-dispersion parameter of 4.87). However,

18% of the iterations still had deviance residuals greater

than or > �3. These residuals were spread over all covariate

patterns and were related to the stochastic variability in the

outcome within the same covariate pattern. In contrast to

statistical modelling of risk factors, the proportion of ill-fit-

ting residuals from the predicted outputs actually provides

insight into stochastic variability in the predicted outcome

by chance alone. As there was no reason to exclude these

observations associated with the stochastic ‘die-out’ frac-

tion, the results using the full data set were reported.

Discussion

Several questions related to the transmission dynamics of

zoonotic influenza viruses at the swine–human interface

have recently been raised by infectious disease control

authorities around the world, including the potential bene-

fit of targeted vaccination of swine workers. Therefore, in

this study, we investigated the transmission dynamics of

pH1N1 2009 virus between swine and human populations

by modelling its spread among and between swine and

human populations simultaneously. Furthermore, the ben-

efit of vaccinating varying proportions of SWH was

assessed. To our knowledge (Dorjee et al., 2013a), only a

single study has modelled the spread of zoonotic influenza

between swine and human populations simultaneously

(Saenz et al., 2006). Our approach differs from that of

Saenz et al. (2006) in a number of ways. Most importantly:

(i) this is a stochastic, spatially explicit agent-based model

with the unit of simulation being the farm or household,

while the previous study used an aggregate deterministic

model with homogeneous mixing, (ii) we categorized the

non-swine worker human population into a mix of rural

and urban households, and (iii) we assessed the effect of

different levels of transmissibility of the virus at the swine–
human interface, while the previous model investigated the

amplifying effect of the influenza spread in rural popula-

tion by swine and swine worker populations.

The 5% stochastic ‘die-out’ fraction observed in cases of

a single infection seeded into the SH population indicates a

fraction of outbreaks that can be expected to undergo ran-

dom extinction without causing an outbreak of epidemic

proportion, given the assumptions inherent in this model.

The fact that the majority of this fraction was observed in

cases that assumed low transmissibility of the virus at the

interface (LL) and/or where 60% of the SWH were vacci-

nated indicates the beneficial effect of lowering the trans-

missibility of the virus or of achieving high coverage of

targeted vaccination as a means of preventing a proportion

of outbreaks. Although the magnitude of this effect will be

affected by the location of the index premise and the den-

sity of the populations surrounding it, we would expect to

observe such phenomena in real-world situations. The

extent to which such location-specific effects might be a

factor could not be ascertained due to the fact that the cur-

rent version of the NAADSM lacks the ability to randomly

seed infections at different locations for each iteration.

The significant difference between the scenarios of low

(LL to ML) versus medium to high (MM to HH) transmis-

sibility of the virus from humans to animals in terms of all

outcome measures in SH population indicated that the

spread from humans to animals had a larger impact than

the animal to human spread. To a large extent, this was due

to higher contact rate between SH and SWH than between

SH units. This result suggested that if we are to obtain a sig-

nificant positive beneficial effect on the outcome measures

we should reduce the transmissibility of the virus from

humans to animals to this low level. Reducing it to the low

level would significantly prolong the time to peak epidemic,

lower the epidemic size of the peak day, as well as the over-

all outbreak size in the SH population. Similar significant

beneficial effects of lowering the transmissibility of the virus

at the interface would be obtained even in the household

population. However, the transmissibility of the virus both

from animals to humans and vice versa had to be reduced

to the low level (LL). The lowering of the transmissibility of

the virus to the LL level also had the beneficial effect of

reducing the overall size of the epidemic in SWH popula-

tion. The positive implication of delaying the time to peak

epidemic day is that veterinary and public health authori-

ties would be provided with more time to mobilize

resources and implement appropriate disease response

measures, such as the delivery of antivirals, vaccination, or

other social distancing measures. Furthermore, reducing

the epidemic size on the peak day should reduce the burden

of disease control activities (such as movement control and
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vaccination in animals) including the burden on health care

facilities.

An important finding of this study is that it highlights

the crucial role the transmission dynamics of influenza at

the swine–human interface can play in influenza spread

between swine and human populations. It indicated that

opportunities exist to prevent or minimize the outbreak of

zoonotic influenza by lowering the transmissibility of the

virus at this interface. Transmissibility of the virus at the

swine–human interface can be minimized through various

mechanisms, including the following: good personal

hygiene, avoiding direct contacts with sick pigs, using

gloves and not smoking while working with pigs (Ramirez

et al., 2006), instructing swine workers to stay away from

work when suffering from influenza like illnesses, and fol-

lowing strict farm biosecurity measures. As significant dif-

ferences in the outcome measures were observed between

low and medium to high levels of the transmissibility, fur-

ther sensitivity analysis needs to be carried out between low

and medium range of values to determine the threshold

level at which a significant beneficial impact can be

achieved. It is recommended that studies are carried out to

quantify the percentage reduction in infection achieved

through these important preventive measures at the swine–
human interface to improve the parameterization of future

modelling studies.

The transmissibility of the virus at the swine–human

interface had little or negligible impact on the epidemic size

in the RH and UH populations. This might suggest that

once the infection has been introduced in the rural or

urban populations it would spread in these populations

independent of its spread at the swine–human interface,

given the relatively larger population sizes and higher con-

tact rates.

It is notable that despite reports of several outbreaks of

pH1N1 across the globe in both human and swine popula-

tions, and the heightened interest in gaining a better under-

standing of the transmission dynamics involved at the

swine–human interface, only one study was found that

reported transmission back from pigs to humans (Howden

et al., 2009). Furthermore, no study could be found that

reported the transmission of pH1N1 from one farm to

another, either through direct shipment of animals or indi-

rect contact (through movement of swine workers, veteri-

narians and other fomites). More representative studies to

estimate different stages of pH1N1 or other influenza viral

infection at the farm level may provide useful information

to parameterize models in the future.

Significant beneficial effects on all the outcome mea-

sures were observed as the level of targeted vaccination of

SWH increased, though the most significant changes were

observed when 60% coverage was reached. These effects

were most evident in the SH and SWH populations and

to a lesser extent in the RH population. Its effect was neg-

ligible on the proportion of UHs infected, likely for similar

reasons to those mentioned for the transmissibility above.

Within the model, we assumed that an effective vaccine

was available prior to the influenza outbreak. Questions

still remain as to whether such a vaccine would be readily

available during the emergent phase of a novel virus.

However, if a limited amount of such vaccine were to be

available early on in an outbreak, targeting swine workers

in cases where the virus was of swine origin should prove

beneficial. Future work could investigate effect of using

vaccine of lower efficacy developed from related strain of

the virus (offering cross-immunity), and the effects of vac-

cinating similar proportions of the rural and/or urban

populations.

Model assumptions, limitations and feasibility of

NAADSM

In common with other modelling studies in this domain, a

reasonable number of assumptions have to be made. While

some of these assumptions are implicit in NAADSM, others

were made due to the lack of information and/or for the

purpose of practicality of model implementation. In the

following section, we discussed these assumptions and/or

limitations of the model and how they impact on our

assessment of the feasibility of using NAADSM for model-

ling directly transmitted zoonotic diseases. In other words,

what could have been done, and how might that have influ-

enced our results and conclusions of this study.

NAADSM simulates diseases spread for a static and

closed population (that is no addition or removal of farms

or households occurs during the simulation, and unit sizes

are fixed throughout the simulation). However, this is a

reasonable assumption given that the duration of the simu-

lation chosen was 1 year (as opposed to a number of years),

and it is a most common assumptions made across in many

comparable studies. One of the main limitations imposed

by the design of NAADSM is the use of farms and house-

holds as the unit of simulation. While this is the most com-

mon approach to model livestock diseases at a farm level,

most modelling studies of human populations are simu-

lated at the individual person level. However, some studies

have suggested modelling disease spread at the household

level as a suitable alternative, especially for diseases such as

pandemic influenza (Ferguson et al., 2005; Longini et al.,

2005; Wu et al., 2006; Fraser, 2007). This level of aggrega-

tion has been justified on the basis that most influenza

transmission occurs within a household. In addition, it is

more practical and effective to target implementation of

both public health and pharmaceutical intervention mea-

sures at the household level and/or all households within a

zone of a certain radius, rather than at the individual level.
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We also assumed all units (farms or households) were

100% susceptible to the influenza virus. A corollary of the

limitation of using farm or household as the unit of simula-

tion is that once a single animal on a farm or a person in a

household become infectious, the entire unit itself is con-

sidered infectious. In reality, all animals on a farm may not

become infected, though studies have shown that the large

majority of animals do become infected during influenza

outbreaks in farms (Howden et al., 2009; OIE, 2009–2010;
Pasma and Joseph, 2010). Even the household secondary

attack rates of pH1N1 were estimated in the range of 13–
50% (Cauchemez et al., 2009; Ghani et al., 2009; Yang

et al., 2009; van Gemert et al., 2011). In addition, the prob-

ability of transmission is likely to be influenced by the

within-farm or within-household prevalence of disease, but

this effect was not accounted-for in the current study. The

effect of animal shipment size on the transmission proba-

bility for direct contacts between SH units was also not

considered. In reality, we would expect the transmission to

be influenced by both within-farm prevalence and ship-

ment size. These assumptions might have overestimated

the spread of the disease in the populations.

Theoretically, it is possible to simulate a disease spread at

the individual person level in NAADSM by making a size of

unit (‘herd/household’) as one and number of units equal

to a total population of an area, assigning location of units

among members of the same household in very close

geographic proximity, and using the ‘local area spread’

mechanism rather than direct contact. However, this will

be difficult to implement because of the huge number of

units and may increase the simulation time required con-

siderably. Therefore, simulation of a disease spread at the

household-level seems more appropriate, at least for conta-

gious diseases like influenza. Currently, there is paucity of

information on how long household remain infectious,

household to household transmission, contact rates among

households, which are required to parameterize household-

level model more accurately. A work similar to the one

reported by van Gemert et al. (2011) would be useful for

this purpose.

Another main limitation of NAADSM is that it is not

possible to assign more than a single location to each unit,

in contrast to some human disease spread models where an

individual can be assigned to two or more locations, such

as the home, school/workplace, community or other places

of social gathering (Haber et al., 2007; Das et al., 2008;

Milne et al., 2010; Ohkusa and Sugawara, 2009; Lee et al.,

2010b). However, simulating these locations explicitly in a

model is important only if a study is aimed at specifically

assessing the impact of these locations on the spread and

intervention measures of diseases. In addition, our model

could not incorporate the heterogeneities in terms of

social demographics such as age, gender, immunity status,

occupations, etc. The contact rates, risk and susceptibility

to an infection may vary significantly among these vari-

ables, as was observed for pH1N1 (Cauchemez et al., 2009;

Yang et al., 2009; van Gemert et al., 2011). It is difficult to

predict the direction of bias due to lack of information on

these demographic values and disease transmission param-

eters. It is possible to incorporate social structure in the

model by using NAADSM’s feature for inclusion of differ-

ent species of animals or production types. However, this

would potentially result in a large number of pairs of

combinations between these variables.

Our model could not incorporate or explore the effect of

different contact network structure as the version of

NAADSM used in this study simulated disease spread as a

function of contact rate, transmission probabilities and

spatial distance (that is based on a spatial kernel with

higher probability of contact between infectious and sus-

ceptible units that are in close geographical proximity)

between source and recipient units. In actuality farms,

households or people only contact a fixed number of units

or individuals in a population, and units in close geograph-

ical proximity may not necessarily have any contact

between one another to facilitate the influenza spread.

Indeed, close spatial proximity between two units become

largely irrelevant unless a disease spreads locally through

aerosol transmission. Furthermore, contact networks in

both human and farm populations exhibit scale-free and/

small-world topologies (Dub�e et al., 2008; Rahmandad and

Sterman, 2008; Buttner et al., 2013; Dorjee et al., 2013b);

characteristics which will influence the speed and extent of

disease spread in a population. In the absence of specific

contact network structures, the speed and extent of influ-

enza spread may have been underestimated in this study.

As this is one of the major limitations of NAADSM, future

version of it needs to incorporate flexibility to model differ-

ent contact network structures.

While some swine workers are likely to live in towns, we

were not able to assign SWH locations to be in town due to

the inability of NAADSM to incorporate such contact net-

work structures explicitly. As we artificially restricted the

geographic locations of SWH within a radius of 0.1–0.5 km

of SH and limited contact distance to a maximum of

0.5 km, this might have underestimated the spread between

SWH and other household types. However, we believe the

magnitude of the bias is likely to be small as the majority of

farms are family operated enterprises in this county (based

on co-authors informed judgment), and due to the fact that

swine workers spend most of the day on these farms. We

also assumed that swine workers work every day of the

week. While this may be true for family owned operators,

some swine workers will likely to take 1 or 2 days off, and

therefore, it is likely that we have overestimated the contact

frequency and thereby the disease spread.
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For simplicity, all swine farms were treated as a homo-

geneous population as we did not have information on a

number of different farm types and their contact parame-

ters. In reality, epidemic size and length of disease out-

break will likely vary by farm type (farrowing, grower,

finishing, etc.) as has been observed for classical swine

fever (D€urr et al., 2013). This might have biased the dis-

ease spread to a certain extent but the magnitude and

direction of bias could not be determined due to lack of

information on the contact and transmission parameters

between different production types. We also did not con-

sider the contacts between populations of the county

being modelled and neighbouring counties, which is not

realistic as some movements of infected and susceptible

populations between counties would be expected. Other

occupational groups such as veterinarians, abattoir work-

ers, and swine transporters, who come into contact with

swine, may play an important role in influenza spread but

these groups were not considered in this study. Therefore,

this would have underestimated the disease spread in the

populations.

Information on contact frequencies between SWH, RH

and UH were not available with assumptions being based

on the informed judgement of co-authors, which may have

introduced some bias in the estimates. Future works could

examine the effects of all these parameters on the modelled

spread of the virus through more extensive sensitivity

analysis.

The effect of seeding the infection randomly in a popula-

tion at different locations could not be assessed as the ver-

sion of NAADSM used in this study lacks this feature. It

would be expected that the speed and extent of spread

including stochastic ‘die-out’ fraction would be influenced

to a certain extent by the density of population around the

index unit. We could have manually selected few index

units randomly at different location to investigate this effect

but due to time constraints it could not be carried out.

Observations from this study suggest that NAADSM

provides a feasible platform for modelling directly trans-

mitted contagious zoonotic diseases between animal and

human populations under simplifying assumptions similar

to those adopted in this study. Overall, NAADSM pro-

vides a sophisticated, flexible and user-friendly software

platform. It is particularly useful to people with a biology

background who do not possess strong mathematical or

computer programming skills (as are typically required to

make appropriate use of other modelling software). Build-

ing model structures and specifying parameters relating to

transmission and control strategies can be easily achieved

within NAADSM as it requires only the specification of

parameter values in the form of fixed values, probability

density functions or relational functions. The software also

has features to generate graphs, summary statistics, and to

compare outcomes across as a range of different scenarios.

Furthermore, NAADSM has features to assess all key inter-

vention strategies either alone or in combination. These

are relevant from a regulatory perspective but are equally

applicable to exploring issues relating to the public health.

Another limitation of the personal computer version of

NAADSM was the time taken to simulate the spread of

disease in populations of a significant size. Despite being

run on a relatively powerful personal computer the simu-

lation for this study (with 30 195 units) took 4 days to

complete 100 iterations. If NAADSM could be developed

further to address the limitations highlighted in this study,

its capability for modelling zoonotic diseases could be

greatly enhanced.

Conclusion

In conclusion, this is a unique one-health modelling study

which investigated the simultaneous spread of pH1N1 both

within and between swine and human populations. It pro-

vided useful insights into how manipulating the transmis-

sion dynamics of pH1N1 at the swine–human interface can

alter the spread of an influenza epidemic in swine and/or

human populations, and illustrated the beneficial effects of

targeted vaccination of swine workers. Minimizing trans-

missibility at the swine–human interface through appropri-

ate mechanisms including targeted vaccination should

form key components of all pandemic contingency mea-

sures for zoonotic influenza. This study also serves as a

benchmark for future studies to improve the modelling

approaches of zoonotic influenza including other directly

transmitted zoonotic diseases further through enhanced

surveillance and collection of quality information to

parameterize models accurately. This study also illustrated

that NAADSM is a feasible and relatively flexible platform

for modelling a spread of directly transmitted zoonotic

influenza between swine and human populations under

certain simplifying assumptions.
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