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Introduction

Summary

The circulation of zoonotic influenza A viruses including pH1N1 2009 and H5N1
continue to present a constant threat to animal and human populations. Recently,
an H3N2 variant spread from pigs to humans and between humans in limited
numbers. Accordingly, this research investigated a range of scenarios of the trans-
mission dynamics of pHINI 2009 virus at the swine-human interface while
accounting for different percentages of swine workers initially immune. Further-
more, the feasibility of using NAADSM (North American Animal Disease Spread
Model) applied as a one-health simulation model was assessed. The study popula-
tion included 488 swine herds and 29, 707 households of people within a county
in Ontario, Canada. Households were categorized as follows: (i) rural households
with swine workers, (ii) rural households without swine workers, and (iii) urban
households without swine workers. Forty-eight scenarios were investigated, based
on the combination of six scenarios around the transmissibility of the virus at the
interface and four vaccination coverage levels of swine workers (0-60%), all under
two settings of either swine or human origin of the virus. Outcomes were assessed
in terms of stochastic ‘die-out’ fraction, size and time to peak epidemic day, over-
all size and duration of the outbreaks. The modelled outcomes indicated that
minimizing influenza transmissibility at the interface and targeted vaccination of
swine workers had significant beneficial effects. Our results indicate that NA-
ADSM can be used as a framework to model the spread and control of contagious
zoonotic diseases among animal and human populations, under certain simplify-
ing assumptions. Further evaluation of the model is required. In addition to these
specific findings, this study serves as a benchmark that can provide useful input to
a future one-health influenza modelling studies. Some pertinent information gaps
were also identified. Enhanced surveillance and the collection of high-quality
information for more accurate parameterization of such models are encouraged.

Prevention (CDC), 2009; Fraser et al., 2009; WHO, 2009).
By 11 June 2009, a full-scale pandemic was declared by the

The on-going threat of an influenza pandemic emerging in
people was highlighted with the novel pandemic HIN1
influenza virus (pHIN1) in 2009. The pHINI1 was first
reported in March to April of 2009 in Mexico, and spread
rapidly across the world (Centers for Disease Control and

World Health Organization (WHO, 2009). Molecular
analyses showed that the virus was genetically similar to
contemporary viruses circulating in swine, based on live-
stock surveillance data in different continents (Garten
et al., 2009; Smith et al., 2009). However, the origin of the
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virus and the exact host species involved in the reassort-
ment remains unknown.

The first detection of pHINI in swine was reported from
the province of Alberta, Canada in May of 2009 (OIE,
2009). It was introduced into the herd by an employee (i.e.
human to animal spread of pHINI), who had recently
returned from a vacation in Mexico (Howden et al., 2009).
Swine-to-swine transmission of pHIN1 was subsequently
demonstrated in several experimental (Itoh et al., 2009;
Lange et al., 2009; Vincent et al., 2010; Brookes et al.,
2010) and observational studies (Howden et al., 2009;
Lange et al., 2009; Pasma and Joseph, 2010). By April of
2010, 20 different countries had reported outbreaks of
pHINTI in swine (Hofshagen et al., 2009; OIE, 2009-2010;
Moreno et al., 2010; Pasma and Joseph, 2010; Pereda et al.,
2010; Song et al., 2010; Sreta et al., 2010; Welsh et al,
2010; Forgie et al., 2011). Although the respective sources
of many of these outbreaks remain unknown, some were
confirmed (Norway, in addition to Canada), or were sus-
pected (Finland, Iceland and Russia) of having involved
human-to-swine transmission (Hofshagen et al., 2009;
Howden et al., 2009; Forgie et al., 2011). In the light of
these reports of pHIN1 outbreaks in swine in several coun-
tries, it is surprising that no studies have reported either
temporal or temporo-spatial spread of the virus between
swine farms (Dorjee et al., 2013a; Torremorell et al., 2012).
Immediately after the reported outbreaks of pHINI in
swine in Canada, restrictions on the export of live pigs and
pork were imposed by several countries (Lynn, 2009; Reu-
ters, 2009). Even without significant documented spread of
pHINI from swine to humans, the social and economic
consequences arising from the subsequent trade restrictions
were devastating. Accordingly, zoonotic influenza A viruses
are of interest to animal and public health authorities, given
their significant implications for public health, animal
health and trade.

Influenza pandemics remain a major zoonotic threat to
mankind, occurring over intervals of one to four decades
since 1918 (Brown, 2000; Ma et al., 2009; Zimmer and
Burke, 2009). Since the first report of transmission of the
HINI 1918 virus from humans to pigs (Shope, 1931), the
transmission of influenza A viruses back and forth between
people and swine has been well documented (Hinshaw
et al., 1978; Easterday, 1980; Dacso et al., 1984; Myers
et al.,, 2007). There is much evidence of reassortments of
swine, human and avian influenza viruses occurring in pigs
in Europe (Brown et al., 1998) and in North America
(Zhou et al., 1999; Karasin et al., 2000; Lekcharoensuk
et al., 2006; Olsen et al., 2006). The transmission of influ-
enza viruses from pigs to people has been reported in a
number of studies (Brown, 2000; Myers et al., 2007; Robin-
son et al., 2007; Ma et al., 2009; Zimmer and Burke, 2009).
Recently, the transmission of the H3N2 variant from
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pigs-to-humans, and a subsequent limited spread between
humans, was reported in the US (Lindstrom et al., 2012).
Based on the findings of this study, swine should be consid-
ered potential hosts for the emergence of novel pandemic
influenza strains. Cross-sectional serological studies found
that those employed in occupations involving direct con-
tact with pigs (e.g. swine farmers, veterinarians, abattoir
workers) are at higher risk of zoonotic influenza infection.
Swine farmers are relatively at higher risk than veterinarians
and abattoir workers (Olsen et al., 2002; Myers et al.,
2006). The shift to large-scale swine operations involving
frequent restocking of young susceptible pigs has facilitated
the persistence of influenza viruses in herds (Vincent et al.,
2008; Gray and Baker, 2011). The persistent transmission
pressure between swine and those working with pigs in
commercial enterprises increases the opportunity for zoo-
notic spread of novel influenza viruses (Myers et al., 2006).
This being the case, it is important to understand the trans-
mission dynamics of influenza at the swine-human inter-
face, to devise intervention strategies.

Recently, mathematical models and simulation tools
have been developed to study the spread and control of
influenza among human (Longini et al., 2004, 2005; Flaha-
ult et al., 2009; Gojovic et al., 2009) and avian (Le Menach
et al., 2006; Guberti et al., 2007; Tiensin et al., 2007) popu-
lations. A small number of studies have investigated the
spread of influenza from birds to birds and from birds to
humans (Arino et al., 2007; Iwami et al., 2007; Kim et al.,
2010), whereas to the best of our knowledge, only one
study investigated the spread of influenza within and
between swine and human populations simultaneously
(Saenz et al., 2006).

Given, (i) the impact of influenza on human health and
the economy, (ii) the importance of swine in the generation
of novel influenza viruses, and (iii) the utility of models in
providing a better understanding of disease transmission
and control dynamics; it is imperative to investigate key
parameters influencing the spread and the effectiveness of
mitigation strategies against influenza at the swine-human
interface through simulating a range of possible scenarios.
Such information can be used to guide the development of
contingency measures to prevent and control the emer-
gence of future influenza pandemics.

Different types of models, ranging from simple deter-
ministic differential equation model (also referred to as sys-
tem dynamic/compartmental or mathematical model)
(Mills et al., 2004; Arino et al., 2008; Brauer, 2008) to com-
plex stochastic agent/individual-based models (microsimu-
lation models) (Germann et al,, 2006; Carpenter and
Sattenspiel, 2009; Lee et al., 2010a; Yang et al., 2009; Tsai
et al., 2010) are used for different diseases in human and
animal populations. Some individual-based models also
incorporate contact network (Ajelli and Merler, 2008;
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Davey et al., 2008; Chao et al., 2010) and spatial locations
explicitly (Sanson, 1993; Morris et al., 2002; Garner and
Beckett, 2005; Harvey et al., 2007; Patyk et al., 2013; Ste-
venson et al, 2013). For detail review of modelling
approaches in animals and humans, readers can refer to the
following references (Kao, 2002; Keeling, 2005; Dorjee
et al.,, 2013a). A number of computer software have been
developed to implement microsimulation models to assess
the spread and control of highly contagious animal dis-
eases, such as AusSpread (Garner and Beckett, 2005), Inter-
Spread Plus (Stevenson et al., 2013) and NAADSM (Harvey
et al., 2007; NAADSM Development Team, 2008). To date,
these tools have been used to model single or multiple live-
stock species but have not attempted to incorporate spread
between domestic animal and human populations. Most
published models used to study spread of diseases among
domestic livestock populations use the herd, rather than
the individual animal, as the unit of interest. In contrast,
most models used to study influenza spread among people
use the individual, rather than the household or group of
people as the unit of interest. However, a few studies in
humans have investigated the spread and control of influ-
enza at the individual household level (Wu et al., 2006;
Fraser, 2007; Shaban et al., 2009). The NAADSM disease
modelling framework was originally developed to accom-
modate different parameters of disease spread between dif-
ferent types of livestock herds or flocks (e.g. dairy cattle,
versus beef cattle, versus swine, versus sheep versus goats in
the spread of foot and mouth disease) (Harvey et al.,
2007). While the concept of using NAADSM to model
households of people as a type of ‘herd’” was not originally
envisioned in development, it was subsequently proposed
by McNab (McNab 2009, personal communication). This
approach provided the opportunity to model the interface
of the spread and control of zoonotic diseases within and
between groups of animals and people under certain sim-
plifying assumptions.

The overall objective of this study was to identify the
relative importance of disease transmission parameters
affecting the spread and control of contagious pathogens
shared between people and swine, using influenza as an
example. Specific objectives included: (i) investigation of
the feasibility of using NAADSM as a tool to model the
spread and control of zoonotic diseases; (ii) a study of the
transmission dynamics of influenza at the swine-human
interface using characteristics of pHINI as an example;
and (iii) an investigation of the utility of applying targeted
vaccination against influenza at the animal-human inter-
face. We chose to use pHIN1 as our example of zoonotic
pathogen due to the fact that: (i) it is readily transmissible
between humans, swine, and human and swine popula-
tions, (ii) information about the biology of this virus is rel-
atively abundant, and (iii) there were several questions
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arising from pHINI concerning its dynamics at the
human-—swine interface.

Materials and Methods

Study area and populations

A county within the province of Ontario, Canada with a
relatively high density of swine farms along with the exis-
tence of a range of rural and urban areas (one small city
and four towns) was selected for this study. The following
spatially explicit units were included as ‘production types’
in the models: (i) swine herds (SH), (ii) rural households
with at least one swine worker (SWH), (iii) rural house-
holds with no swine workers (RH), and (iv) urban house-
holds without swine workers (UH). Swine workers
(owners/managers/labourers of swine farms) served as the
bridging population for pHINI1 transmission between
swine and human populations. Population data to ensure a
representative mixture of each type of unit within the
model were extracted from the 2006 official census of Sta-
tistics Canada (Statistics Canada, 2007c,f). A total of 488
SH with 664 508 pigs were recorded in the census year of
2006 for the county. As only the aggregate number of SH
and pigs were available at the census consolidated subdivi-
sion level, the number of animals per farm in the model
was generated using a uniform distribution with minimum
and maximum values of 500 and 2500 animals, respectively,
(£ 4 standard deviation from a mean of approximately
1500 animals). The number of SWH was approximately 1.5
times the number of SH, based on the data for swine opera-
tors and agricultural labourers (general figure not reported
by enterprise type) recorded in the 2006 official census. A
total of 25 297 people in 8612 rural households were
reported in this county. Therefore, an appropriate number
of RH (7879) was generated by subtracting the number of
SWH (733) from the total rural households. The numbers
of UH and people recorded in the five urban areas were as
follows: City A — 13 316 households with 30 461 people;
Town B — 2733 households with 6617 people; Town C —
2731 households with 6303 people; Town D — 1714 house-
holds with 4220 people; and Town E — 601 households with
1446 people. A Poisson distribution with a mean of three
and truncated at two and seven for SWH (Statistics
Canada, 2007b), and one and six for RH and UH were
assumed for the number of people living in each household
as per the census record (Statistics Canada, 2007e). The
final study population units and respective unit sizes are
presented in Table 1.

Swine farm and household locations

Digital vector maps delineating the boundaries of rural and
urban areas of this county were obtained from Statistics
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Table 1. Description of study populations and probability density func-
tions of the size of units used for the simulation of influenza spread
between swine and human populations in a country of Ontario, Canada

Total
Total no.  Distribution of size no. of
Population units of units of units individuals
Swine herds (SH) 488 Uniform 733 107
(min = 500;
max = 2500)
Swine-worker 733 Truncated Poisson 2325
households (SWH) (mean = 3, min = 2;
max = 7)
Rural non-swine- 7879 Truncated Poisson 25 521
worker-households (mean =3, min = 1;
(RH) max = 6)
Urban households(UH) 21 095 Truncated Poisson 54 038
(mean = 3, min = 1;
max = 6)
Total 30 195 814 991

Canada (Statistics Canada, 2007a,d). As the specific geo-
graphic coordinates of SH, SWH and RH were not available
in the official census data, their locations were randomly
distributed spatially within the agricultural areas of the
county using a Geographic Information System. A mini-
mum distance of one kilometre was specified between
swine herds. Swine-worker household locations of owners/
managers and labourers were generated within the radii of
100-300 and 300-500 metres of SH, respectively. Although
some swine workers stay in towns, it was done to restrict
the contact of a SWH to a specific farm for all iterations.
This was achieved by also specifying the maximum contact
distance between SWH and SH to 0.5 km. RH locations
were generated randomly in agricultural polygons with the
additional constraint that they must be outside a 500 m
radius of any SH and at least a distance of 10 m away from
any other household. Similarly, locations of UH were ran-
domly distributed within the five urban boundaries, speci-
fying a minimum distance of 10 m between any two
households. All spatial data manipulation and random spa-
tial locations were generated using Quantum GIS (QGIS)
version 6.1.0 (Open Source Geospatial Foundation Project.
http://qgis.osgeo.org).

Model structure

North american animal disease spread model (NAADSM)

The supercomputer version of the NAADSM 3.1.24
(NAADSM Development Team, 2008) was used for the con-
struction and simulation of models for pHIN1 spread in
swine and human populations. The NAADSM is an agent-
based platform that simulates the spread of diseases in pop-
ulations using stochastic, spatially explicit, state-transition
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methods. The epidemiological unit of interest within
NAADSM is an aggregation of animals managed together
as a single unit at a single geographic location, typically as
herd or flock. The platform was developed to simulate the
spread and control of contagious animal diseases (e.g. foot
and mouth disease) between spatially explicit groups of
animals, either of the same or different species and produc-
tion types. It is flexible in the manner in which users can
define the spread of a disease between different pairs of
units (e.g. dairy cattle to beef cattle; swine farrowing opera-
tion to swine grower/finisher operations, etc.). It models
disease transmission between farms by direct contact
(through movement of live animals between farms), indi-
rect contact (through the movement of people and contam-
inated fomites) as well as airborne and local area spread.
The local area spread feature enables to specify other mech-
anisms of disease spread locally through insects, pests,
spread between animals of two adjacent farms across the
fence and lapses in biosecurity measures (Reeves et al.,
2012). It has provisions to quantify the predicted number
of infected places arising from a number of different disease
intervention strategies, such as quarantine and movement
control, vaccination, depopulation and zoning. Each unit is
initially assigned attribute data, including: a unique unit
ID; the type of unit (e.g. dairy, beef, swine, etc.); number of
animals in that unit; location of the unit (i.e. point geo-
coordinates in longitude and latitude); and disease transi-
tion state. A detailed description of NAADSM has been
provided by Harvey et al. (2007) and Hill and Reeves
(20006).

Disease states

A susceptible-exposed-infectious-recovered (SEIR) model
structure was used for each of the types of epidemiological
units of interest described in this study. Susceptible units
were herds or households susceptible to infection but not
infected; exposed/latent units were those that had been
infected but were not shedding organisms; infectious units
were units shedding organisms, while recovered units were
those that had recovered and were immune to further
infection. The unit-level latent period was assumed equal
to the time from the first individual within the unit became
infected to the time when the first individual transited to
the infectious state. The unit remained in the infectious
state from the time when the first individual within the unit
became infectious to the time until the last individual in
that unit transited to the recovered state. Therefore, the
unit-level latent period was equal to the duration of indi-
vidual-level latent state, whereas a unit-level clinical infec-
tious period varied with the size of the infected unit.
Following infection, a susceptible unit transited through
the subsequent disease states beginning on the day
following infection in a cyclic fashion in the absence of any
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intervening control measures, such as vaccination or
depopulation. The duration of each of these disease states
for any particular unit type was either based on a fixed
value or was chosen stochastically from the defined proba-
bility distribution as described in the model parameters
section below. Permanent immunity was simulated by
setting a naturally immune duration which exceeded the
duration of the simulated period (365 days).

Disease transmission

To investigate the transmission dynamics of pHINI
between swine and human populations, its spread was sim-
ulated between different combinations of pairs of unit types
as follows: (i) amongst swine herds (SH to SH), (ii)
between SH and SWH, and (iii) among SWH, RH and UH,
simultaneously. The influenza transmission among swine
herds was simulated by both direct and indirect contacts,
while the spread between SH and SWH, and among house-
holds occurred only through direct contact. A latently
infected SH unit was also assumed infectious to other sus-
ceptible SH units by direct contact as shipment of latently
infected pigs to susceptible units would most likely result in
transmission of infection. In all other cases only the infec-
tious units would transmit the infection to the susceptible
units. For the disease spread from SH to SWH and vice
versa, direct contacts were assumed to have occurred when
the swine workers came in contact with pigs on farms (SH)
during the course of their daily work. To ensure that each
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SWH was assigned to a specific farm throughout the simu-
lation, a movement distance restriction zone of uniform
distribution between 100 and 500 m was created as per the
synthetically generated locations of SWH described above.

For influenza spread among households, a direct contact
was assumed to have occurred implicitly when an individ-
ual from an infectious household established contact with
individuals at any place, such as schools, workplaces or
other areas where individuals congregate. Individuals who
become infected as a result of contact with an infectious
person outside their home could, in turn, infect individuals
within their home and outside of their home. Similar
assumptions have been made in modelling influenza spread
at the household level (Wu et al., 2006; Fraser, 2007; Sha-
ban et al.,, 2009). The influenza transmissions between
infectious and susceptible units through direct and indirect
contacts were simulated as a function of contact rate, the
probability of infection per contact and movement distance
distribution between the units.

Model parameters

Duration of disease states

Parameters for both the individual- and unit-level duration
of the different disease states for swine and human popula-
tions are presented in Tables 2 and 3 respectively. The indi-
vidual level parameters for swine and human populations
were extracted from the published literature (references are

Table 2. Parameters and their probability density functions for swine farms used in the simulation of influenza spread between swine and human
populations in a county of Ontario, Canada

Input parameters Individual Herd level References

Fixed value of 1°
BetaPERT(0, 3, 6)°
BetaPERT (5; 25;45)°
Fixed value 366%

(Brookes et al., 2010; Lange et al., 2009; Vincent et al., 2010);

bGenerated from the individual-level parameters using WH 0.9.5 softwaret;

“(Blaskovic et al., 1970; Desrosiers et al., 2004);

dAssumed permanent immunity by using a value greater than the duration of
the simulation period (365 days)

Latent period (day) 12
Subclinical infectious (day) 0-6°
Clinical infectious (day) 1-15°
Immune period (day) 365-840°

TWH 0.9.5 is the software that simulate within-herd disease transmission stochastically and generates herd-level durations of disease states
(A. Reeves, M. Talbert, M. D. Salman, and A. E. Hill, submitted). Parameters were extracted from the references with the same superscripts.

Table 3. Parameters and their probability density functions for households used in the simulation of influenza spread between swine and human
populations in a county of Ontario, Canada

Input parameters Individual Household References

BetaPERT (1, 2, 3)°
BetaPERT (0, 2, 3)°
BetaPERT (4, 12, 20)°

Latent period (day) 1-32
Subclinical infectious (day) 0-3°
Clinical infectious (day) 4-10°

2(Pourbohloul et al., 2009; Boélle et al., 2009; Tuite et al., 2010);

bGenerated from the individual-level parameters using WH 0.9.5 softwaref;

“Assumed permanent immunity by using a value greater than the duration of
the simulation period (365 days)

Immune period (day) - Fixed value of 366¢

TWH 0.9.5 is the software that simulate within-herd disease transmission stochastically and generates herd-level durations of disease states
(A. Reeves, M. Talbert, M. D. Salman, and A. E. Hill, submitted). Parameters were extracted from the references with the same superscripts.
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provided in tables). As no information on clinical infectious
period existed at the herd or household levels, they were
generated from the individual-level parameters using the
WithinHerd (WH-within-herd disease spread model) soft-
ware version 0.9.5 (A. Reeves, M. Talbert, M. D. Salman,
and A. E. Hill, submitted). This is a stochastic modelling
framework that simulates the within-unit disease spread
and generates the unit-level durations of disease states. The
same swine and household populations were used for the
within-unit influenza spread simulations. A BetaPERT dis-
tribution (which was the best fitting probability distribu-
tion for clinical infectious duration based on the outputs of
the within-herd transmission model) based on the mini-
mum, mode and maximum values of 100 iterations of the
within-unit spread models of swine herd (except for latent
period for which a fixed value of 1 day was assumed) or
household populations were then used for NAADSM mod-
els. The durations of immunity period for SH and house-
holds were assumed to be permanent as immunity to
specific strain of influenza viruses are long lasting.

Contact frequencies

Daily direct and indirect contact frequencies among SH
were extracted from the published and unpublished sources
(Table 4). Data on how frequently pairs of different
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household population types contact each other were not
available. Therefore, assumptions based on the informed
judgement of the co-authors were made. These assump-
tions, along with the average daily individual contact
frequency of 13.5, extracted from Mossong et al. (2008) and
Lee et al. (2010a), were used to derive the mean daily con-
tact rate between different pairs of the population types
(Table 4). As SWH and RH were in rural communities, only
half the individual daily contact frequency noted previously
was used here. Co-authors also discussed and used their best
judgement to specify the movement distance distributions
between source and recipient units for all populations.

Disease transmission probabilities

In general, it is difficult to measure the transmission proba-
bility per contact, and therefore, it is mostly derived from
calibrating models to match either the cumulative number
of cases or R, (basic reproductive number) of on-going or
historical outbreaks (Saenz et al., 2006; Rahmandad and
Sterman, 2008; Vynnycky and White, 2010). Given an Ry, a
contact rate (C) and an average duration of infectiousness
of totally susceptible individuals (D), transmission proba-
bility per contact (P), which is the probability that infection
will be transferred between an infected and a susceptible
units given an adequate contact has been made can be

Table 4. Contact structure and influenza transmission parameters used in the simulation of influenza spread between swine and human populations

in a county of Ontario, Canada

Mean Probability of
contacts/  Distance distribution of infection (Low/

Contact type day recipient units (km) medium/high)  References

Swine to swine 4(Christensen et al., 2008; Bates et al., 2001) and unpublished data
SH-SH (Direct 0.06% BetaPERT(0.8, 20, 100)° 1¢ from Ontario Veterinary College;

contact) BAssumption based on the informed judgement of co-authors;
SH-SH (Indirect  0.1962 BetaPERT (0.8, 20 100)° 0.01° “Assumed based on based on experimental studies
contact) (Brookes et al., 2010; Lange et al., 2009; Vincent et al., 2010);

Swine to human dBases on the assumptions explained in the main text;

SH-SWH 1d Uniform(0.1, 0.5)° (0.024/0.3/1¢ €Assumed once/week based on the informed judgement of co-authors

Human to swine and multiplied by half the individual contact rate from Lee et al.
SWH-SH 19 Uniform(0.1, 0.5)° (0.024/0.3/1)°  (2010a) and Mossong et al. (2008);

Human to human fDerived from R, value of pHTN1 2009 as explained the text;
SWH-SWH 0.857¢ BetaPERT(0.5, 20, 100)° (0.024)f 9Assumed five times/week based on the informed judgement of
SWH-RH 4.286 9 BetaPERT(0.1, 10, 30)° (0.024)f co-authors and multiplied by half the individual contact rate from
SWH-UH 0.857¢ BetaPERT(1, 30, 65)° (0.024)f Lee et al. (2010a) and Mossong et al. (2008);

RH-SWH 0.857° BetaPERT(0.1, 10, 30)° (0.024)f PAssumed once/year based on the informed judgement of co-authors
RH-RH 4.286 9 BetaPERT(0.01, 20, 100)°  (0.024)f and multiplied by the individual contact rate from Lee et al. (2010a)
RH-UH 0.857¢ BetaPERT(1, 30, 65)° (0.024)f and Mossong et al. (2008);
UH-SWH 0.036" BetaPERT(1, 30, 65)° (0.024)f 'Assumed twice/year based on the informed judgement of co-authors
UH-RH 0.071' BetaPERT(1, 30, 65)° (0.024)f and multiplied by the individual contact rate from Lee et al. (2010a)
UH-UH 12.893  BetaPERT(0.01, 10, 30)° (0.024)f and Mossong et al. (2008);

IBased on the individual contact rate from Lee et al. (2010a) and
Mossong et al. (2008)

SH, Swine herds; SWH, Swine-worker households; RH, Rural non-swine-worker households; UH, Urban households.

Parameters were extracted from the references with the same superscripts.
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derived from the following formula (Rahmandad and Ster-
man, 2008; Vynnycky and White, 2010; Rahmandad et al.,
2011):

Ry=CxPxD.

However, neither an estimate of R, nor historical data on
influenza spread between farms are available in the litera-
ture. Therefore, for simplicity, transmission probabilities of
100% and 1% were assumed for direct and indirect con-
tacts, respectively. In reality, all other parameters being
equal, the transmission probability among units will vary
depending on the within-unit prevalence and the number
of animals shipped from infected to susceptible farms.
These assumptions may not be unreasonable as within-herd
spread of influenza in swine is known to be rapid and no
immunity is anticipated to exist in naive recipient herds to
a novel strain such as pHIN1.

For spread among households, the transmission proba-
bility per contact (P) was estimated from individual-level
data using the formula provided above. The mean trans-
mission probability and its 95% probability interval were
estimated based on the minimum, most likely and maxi-
mum R, values of 1.3, 1.5, and 2.2, respectively (Fraser
et al.,, 2009; Pourbohloul et al., 2009; Tuite et al., 2010),
and corresponding daily contact frequencies of 6.9, 13.1,
and 18.2 (Mossong et al., 2008), and the duration of infec-
tious period of 2, 7, and 10 days, respectively (Pourbohloul
et al., 2009; Yang et al., 2009) using a Monte Carlo simula-
tion of 1000 iterations in the PopTool version 3.2.5 (Micro-
soft Excel add-in program available at www.poptools.org).
An estimated mean of 0.024 with 95% probability interval
0.012-0.048 of transmission probability per contact were
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obtained. This estimate was similar to the median value of
0.043 used by Lee et al. (2010a).

Other assumptions made within the model were as fol-
lows: all swine and human populations were totally suscep-
tible to the virus, all populations were closed with no
addition or losses throughout the simulation period (the
mortality of pigs from pHINT is negligible [OIE, 2009], and
pHINI mortality in humans is < 1%); populations were
homogeneous with random mixing both within and
between groups as defined by the contact structures. In
addition, the disease spread through direct or indirect con-
tacts between our study populations and similar popula-
tions of other counties in the province were not considered.

Scenarios

The transmission dynamics and the extent of spread of
pHINI1 both within and between swine and human popu-
lations were assessed under the two broad scenarios of the
virus origin, from a swine herd or from urban households.
Within each of these broad scenarios, the speed, duration
and magnitude of the disease spread were investigated at
three different levels of the transmissibility (low, medium
and high) at the swine-human interface. Six possible com-
binations of transmissibility of the virus at the swine—
human interface were investigated; (i) low animal to
human — low human to animal (LL), (ii) medium animal
to human — low human to animal (ML), and so forth, as
summarized in Fig. 1. The values used for low (low animal
to human or low human to animal) and high (high animal
to human or high human to animal) transmissibility were
equal to those estimated for human to human

Influenza origin human interface

Transmission probability at the swine-

(Low = 0.024; Medium = 0.3; High = 1.0)

Percentage of swine-
worker-households
(SWH) vaccinated

—[ Low AH - Low HA (LL) ]—

A. Swine herd [ Med. AH — Low HA (ML) ]—

SWH-0%

—[ High AH — Low HA (HL) ]_

SWH-15%

B. Urban [
households L Med. AH — Med. HA (MM)

SWH-30%

—[ High AH — Med. HA (HM) ]—

SWH-60%

—[ High AH - High HA (HH) ]—

Fig. 1. Graphical description of scenarios used for the simulation of the simultaneous spread of pandemic influenza HIN1 2009 virus between swine
and human populations in a county of Ontario, Canada. AH, animal to human, HA, human to animal, SWH- 0% to 60% refers to the percentage of
swine-worker households vaccinated prior to the disease outbreak with the assumption of a 100% protective effect.
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spread (P = 0.024) and swine to swine spread (P = 1.0),
respectively. A medium transmissibility (medium animal to
human or medium human to animal) of P = 0.3 was used
based on the higher value suggested by Lee et al. (2010a).

Furthermore, each of these scenarios was investigated at
four levels of initially immune SHW population (0%, 15%,
30%, and 60%). It was assumed that all members of the
SHW family have been vaccinated and was 100% immune
to the infection throughout each simulated outbreak. It was
based on the assumption that a limited stockpile of effective
vaccine was available at the very early phase of an outbreak
and assessing the benefit of targeted vaccination of SWH
population. A total of 48 scenarios (6 scenarios of the trans-
missibility of the virus multiplied by four levels of the vac-
cination coverage, all under the two settings of virus
seeding, SH or UH (index case) were investigated(Fig. 1).
In the case where the virus originated in swine herd the
infection was seeded into a single randomly selected SH for
all iterations. For the scenario of virus originating in
human population, it was seeded in five randomly selected
UH for all iterations. Each scenario was simulated over
1000 iterations in time-steps of one day for 365 days.

Statistical analyses

The models’ outcomes were assessed in terms of the param-
eters that were relevant from epidemiological and regula-
tory perspectives. They included: (i) stochastic ‘die-out’
fraction—proportion of iterations that did not result in an epi-
demic outbreak; defined as <1% of units (total populations
combined) becoming infected, (ii) time to peak epidemic
day — day on which a highest number of infectious units
was observed, (iii) epidemic size of a peak day — number of
infectious units observed on the peak epidemic day, (iv) out-
break duration — time to end of an outbreak defined as the
time until no latent or infectious unit was present, or a cut-
off value of 365 days if the outbreak persisted beyond the
simulated time period, and (v) outbreak size — total number
of infected units. Summary statistics associated with these
outcomes (5th, 50th and 95th percentiles of 1000 iterations)
were generated for all scenarios. The cut-point of <1% of
units infected was chosen to define the ‘stochastic die-out’
fraction as the percentage of units infected was >30% in all
other iterations. The effects of the three parameters; (i) ori-
gin of the virus, (ii) transmissibility of the virus at the
swine—human interface, and (iii) vaccination of SWH popu-
lation on the outbreak duration and proportion of units
infected were evaluated by fitting the survival and binomial
logistic regression models, respectively. Fitting the multivar-
iable models allowed for an assessment of interaction effects
between these parameters on the outcomes.

An accelerated failure-time (AFT) survival model (using
the generalized linear model (glm) function with a gamma
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distribution) was fitted to the epidemic duration as the out-
come variable, and the three input parameters as predictor
variables. All iterations were considered failed event at the
end of the outbreak duration. All input parameters were
coded as categorical variables. The origin of the virus was
coded as 1 = swine origin (reference category) and
2 = human origin. The transmissibility of the virus at the
interface was coded as 1 = LL (reference category), 2 = ML,
3 = HL, 4 = MM, 5 = HM, and 6 = HH. The vaccination
coverage of SWH was coded as 1 = 0% (reference category),
2 =15%, 3 = 30%, and 4 = 60%. All two-way interactions
among the predictors were evaluated and retained if signifi-
cant at P < 0.05 and if the relative difference in the pre-
dicted duration of epidemic at any levels of the interaction
terms was greater than one-week duration. This criterion
was used because even a small difference between two inter-
action terms tended to exhibit statistical significance due to
large sample size (each scenario being simulated 1000
times). Akaike Information Criterion (AIC) and Cox—Snell
residual plots were used to select the best fitting AFT para-
metric survival model as well as to evaluate the overall fit of
the model to the data (Dohoo et al., 2009). Residuals were
evaluated using deviance residual and plotting the residuals
against the fitted values or individual predictors.

The effect of the predictors on the size of epidemic was
assessed using logistic regression for binomial data (glm
function with binomial family distribution and logit link).
All predictors were entered into the model as described in
the survival model above. The number of each population
type infected in each scenario was combined together into
single outcome variable, and a variable of the population
type was generated. This variable was coded as 1 = SH,
2 =SWH, 3 = RH, and 4 = UH. This allowed assessing
the effects of the predictors on epidemic size for each of the
population type using a single model. All two-way interac-
tions among the predictors were examined and retained if
they were significant at P < 0.05 and, if the relative differ-
ence in the predicted proportion of units infected at any
levels of the interaction terms was >5%. Model diagnostics
and residuals were evaluated based on the deviance chi-
squared test and deviance residuals. Results of the survival
and the binomial logistic regression models are presented
in terms of predicted margins of median epidemic duration
and proportion of units infected at the representative val-
ues of the covariates. All analyses were implemented in Sta-
ta version 12.1 (StataCorp. 2011. Stata Statistical Software:
Release 12. College Station, TX, USA: StataCorp LP).

Results

Stochastic ‘die-out’ fraction
The stochastic nature of the modelling approach used in
this study was reflected not only in the variability of the
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predicted measures, but also by the probability of an
infection dying out without leading to an outbreak, by
chance alone. We observed that 1188 of the 24 000 itera-
tions, equivalent to 5% of the number of simulated influ-
enza outbreaks underwent stochastic ‘die-out’ when the
virus originated in swine. Furthermore, the majority of
the ‘die-out’ iterations (59%) were observed in the LL
scenario amongst the scenarios of the transmissibility of
the virus at the swine-human interface (Fig. 2). Similarly,
among the categories of the vaccination coverage, the
maximum number of ‘die-out’ iterations (42%) occurred
in the 60% vaccination coverage category (Fig. 2). No
such ‘die-out’ was observed when the infection was
seeded into five randomly selected UH (human origin of
the virus).

Peak epidemic day and size

It took approximately 25 days to infect the first UH in the
case of the virus originating in swine population, whereas
it took approximately 45 days to infect the first SH when
the virus originated in the human population. The time to
reach the peak epidemic day and the epidemic size of the
peak day were estimated as the median of 1000 iterations
for each scenario. In general, the delay to peak epidemic
day was shorter, and the epidemic sizes of the peak days
were higher as the transmissibility of the virus at the
swine-human interface increased. In contrast, as the vacci-
nation coverage of SWH increased the delay to peak epi-
demic day was longer, and the epidemic sizes of the peak
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days were smaller in both swine herd and household
populations.

As the origin of the virus was directly correlated with
delay to the peak epidemic day and the epidemic size of the
peak day in the corresponding swine herd or household
populations, respectively, we focused our attention on the
effects of the transmissibility of the virus and vaccination
parameters on these outcome measures to the UH origin
for SH population, and SH origin for the household popu-
lations. In the case of SH, the higher transmissibility of the
virus (MM to HH) shortened the delay to peak epidemic
day by 3—5 weeks (15-26% reduction) compared with low
transmissibility (LL to HL) across all levels of vaccination
coverage (Fig. 3). The delay to the peak epidemic days
among LL to HL or MM to HH were practically small (dif-
ference of approximately <1 week i.e. <8% reduction). The
differences in the epidemic sizes of the peak days among
different scenarios of the transmissibility were small (differ-
ence of <4 infected units) across all levels of the vaccination
coverage.

Vaccinating 60% of SWH delayed the peak epidemic day
by 2-3 weeks (14-20% longer) when compared to the sce-
nario with no vaccination, in the SH population across all
levels of the transmissibility (Fig. 3). However, the vaccina-
tion coverage up to 30% had only a small effect (<7%
increase in the time to peak epidemic day). The differences
in the epidemic sizes of peak days among various vaccina-
tion coverage levels were small (<4 units infected).

In the household populations, the delay to peak epidemic
day was longer by approximately 3-6 weeks (15-31%

8 Percentage of die-out iterations by the transmissibility scenarios
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Fig. 2. Percentage of iterations with stochastic ‘die-outs’ (<1% of units infected) of 24 scenarios of the simultaneous spread of the influenza (swine
origin) between swine and human populations. These scenarios consisted of combinations of the six levels of transmissibility of the virus at the swine-
human interface and four levels of the vaccination coverage of swine-worker-household population. Each scenario was simulated for 1000 iterations.

Transmissibility abbreviations are outlined in Figure 1.
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Fig. 3. Epidemic curves illustrating the spread of the influenza in the
swine herds (SH) in the case of virus originating in the urban households
under the different levels of transmissibility of the virus at the interface,
and at the two levels of the vaccination coverage of the swine-worker
households (SWH). As the effects of transmissibility at the 15% to 30%
vaccination coverage levels were similar to the scenario when none
was vaccinated, only the epidemic curves at 0% and 60% vaccination
coverage levels are shown. Transmissibility abbreviations are outlined in
Figure 1.

longer) when the transmissibility of the virus at the interface
was low (LL) compared with the higher transmissibility
(ML to HH) across all levels of the vaccination (Fig. 4).
This effect was more apparent in the scenario with no vac-
cination. The epidemic size of peak day was lower by 11-22
infected households (a moderate reduction of 7-15%)
when the transmissibility of the virus was low (LL) than at
the higher transmissibility levels (ML to HH).

Vaccinating 60% of the SWH delayed the peak epidemic
day by 2-5 weeks (13-33% longer) and reduced the epi-
demic size on the peak day by 33—37 infected households (a
moderate reduction of 20-22%) when compared with none
were vaccinated. However, the effects of 15% to 30% vacci-
nation coverage on these two outcomes measures were
small (<12% change on the delay time and the epidemic
sizes of the peak days).
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Fig. 4. Epidemic curves illustrating the spread of the influenza in the
household population in the case of virus originating in a swine herd
under the different levels of transmissibility of the virus at the interface,
and at two levels of the vaccination coverage of the swine-worker
households (SWH). As the effects of the transmissibility of the virus of
the 15% to 30% vaccination coverage were similar to that of a scenario
when none was vaccinated, only the epidemic curves at 0% and 60%
vaccination coverage are shown. Transmissibility abbreviations are out-
lined in Figure 1.

Epidemic duration

The overall median (5th and 95th percentiles) epidemic
duration was 308 (261-365) days. The result of the survival
model on the epidemic duration indicated that an AFT
model with gamma distribution fitted the data best. All the
predictors (that is input parameters from the scenarios)
had a significant effect on the epidemic duration. The only
significant interaction observed was between the transmis-
sibility of the virus and the proportion of SWH vaccinated.
The predicted median epidemic duration was 6 days longer
in the case where the virus originated in swine than in
human, at all levels of the transmissibility and the vacci-
nation coverage. Though statistically significant, this
difference was too small to be considered practically
meaningful. The interaction effect between the transmissi-
bility and vaccination was mainly due to the significant
change in the slope (shortening of the epidemic duration)
between low (LL) versus the higher transmissibility (ML to
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Fig. 5. The interaction plot for the transmissibility of the virus at the
interface and the vaccination of the SWH population on the predicted
median epidemic duration for the influenza outbreaks in the case of the
virus originating in a swine herd. The effects were similar in the case of
virus originating in the urban households. SH, swine herds; SWH,
swine-worker households; RH, rural non-swine-worker households,
UH, urban households. Transmissibility abbreviations are outlined in
Figure 1.

HH) at the low vaccination coverage (0% to 30%) (Fig. 5).
This means under low vaccination coverage the increase in
the transmissibility of the virus (LL versus ML to HH) will
shorten the epidemic duration relatively more (3-6%
reduction) compared with the vaccination coverage of 60%
(1-3% reduction).
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The deviance residuals did not indicate any particular
outlying observation, except for the stochastic ‘die-out’
fraction (1188 iterations). Excluding these iterations
increased the predicted median epidemic duration up to
7% for the origin of the virus and for the interaction term
between the transmissibility and vaccination coverage.

Epidemic size

The overall median (5th—95th percentiles) of infected units
were 83% (67-98%) of SH, 69% (34-99%) of SWH, 54%
(47-58%) of RH, and 35% (34-36%) of UH. The logistic
regression results showed that the effect of the transmissi-
bility and the targeted vaccination of SWH on the epidemic
size depended (significant interaction) on the population
types (Fig. 6). Furthermore, the interaction effect between
the transmissibility and the vaccination on the epidemic
size was significant. The proportion of SH infected was sig-
nificantly higher when the transmissibility of the virus from
human to animal was higher (MM to HH) compared with
when it was low (LL to ML) (Fig. 6a). However, the magni-
tude of the difference was relatively larger (by 9-13%)
at vaccination coverage of 60% compared with coverage of
0-30%. While the vaccination coverage up to 30% caused a
small reduction (1-8%) in the proportion of SH infected,
60% coverage had significant reduction (8-21%), particu-
larly at the low transmissibility of the virus from human to
animal spread (LL to ML) (19-21% reduction).
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Fig. 6. The interaction plots for the transmissibility of the virus at the interface and the vaccination of the SWH population on the proportion of units
infected for the influenza outbreaks in the case of the virus originating in swine herd. The effects were similar in the case of virus originating in the
urban households. SH, swine herds; SWH, swine-worker households; RH, rural non-swine-worker households, UH, urban households. Transmissibility

abbreviations are outlined in Figure 1.
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For the SWH units, a significant difference in the pro-
portion of SWH infected was observed between the low
(LL) versus higher transmissibility (ML to HH) of the virus
(Fig. 6b). Furthermore, this difference was relatively larger
when SWH were vaccinated (15-60%) compared to no
vaccination, a difference of 12-17% versus 4-5%, respec-
tively. Similarly, vaccination reduced the proportion of
SWH infected by 13-68%, with relatively larger reduction
at the low transmissibility of the virus (LL). While the vac-
cination caused a small reduction in the percentage of RH
infected (up to 9% reduction), the transmissibility of the
virus had negligible effect on the proportion of RH and UH
infected (Fig. 6¢ and d).

The overall goodness-of-fit test of the final model using
deviance chi-squared test showed a significant lack of fit
(P < 0.001) with a deviance over-dispersion parameter of
197.9. Most observations with extreme deviance residuals
were the stochastic ‘die-out’ fraction. Excluding these
observations improved the fit of the model substantially (a
deviance over-dispersion parameter of 4.87). However,
18% of the iterations still had deviance residuals greater
than or > £3. These residuals were spread over all covariate
patterns and were related to the stochastic variability in the
outcome within the same covariate pattern. In contrast to
statistical modelling of risk factors, the proportion of ill-fit-
ting residuals from the predicted outputs actually provides
insight into stochastic variability in the predicted outcome
by chance alone. As there was no reason to exclude these
observations associated with the stochastic ‘die-out’ frac-
tion, the results using the full data set were reported.

Discussion

Several questions related to the transmission dynamics of
zoonotic influenza viruses at the swine-human interface
have recently been raised by infectious disease control
authorities around the world, including the potential bene-
fit of targeted vaccination of swine workers. Therefore, in
this study, we investigated the transmission dynamics of
pHIN1 2009 virus between swine and human populations
by modelling its spread among and between swine and
human populations simultaneously. Furthermore, the ben-
efit of vaccinating varying proportions of SWH was
assessed. To our knowledge (Dorjee et al., 2013a), only a
single study has modelled the spread of zoonotic influenza
between swine and human populations simultaneously
(Saenz et al., 2006). Our approach differs from that of
Saenz et al. (2006) in a number of ways. Most importantly:
(i) this is a stochastic, spatially explicit agent-based model
with the unit of simulation being the farm or household,
while the previous study used an aggregate deterministic
model with homogeneous mixing, (ii) we categorized the
non-swine worker human population into a mix of rural
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and urban households, and (iii) we assessed the effect of
different levels of transmissibility of the virus at the swine—
human interface, while the previous model investigated the
amplifying effect of the influenza spread in rural popula-
tion by swine and swine worker populations.

The 5% stochastic ‘die-out’ fraction observed in cases of
a single infection seeded into the SH population indicates a
fraction of outbreaks that can be expected to undergo ran-
dom extinction without causing an outbreak of epidemic
proportion, given the assumptions inherent in this model.
The fact that the majority of this fraction was observed in
cases that assumed low transmissibility of the virus at the
interface (LL) and/or where 60% of the SWH were vacci-
nated indicates the beneficial effect of lowering the trans-
missibility of the virus or of achieving high coverage of
targeted vaccination as a means of preventing a proportion
of outbreaks. Although the magnitude of this effect will be
affected by the location of the index premise and the den-
sity of the populations surrounding it, we would expect to
observe such phenomena in real-world situations. The
extent to which such location-specific effects might be a
factor could not be ascertained due to the fact that the cur-
rent version of the NAADSM lacks the ability to randomly
seed infections at different locations for each iteration.

The significant difference between the scenarios of low
(LL to ML) versus medium to high (MM to HH) transmis-
sibility of the virus from humans to animals in terms of all
outcome measures in SH population indicated that the
spread from humans to animals had a larger impact than
the animal to human spread. To a large extent, this was due
to higher contact rate between SH and SWH than between
SH units. This result suggested that if we are to obtain a sig-
nificant positive beneficial effect on the outcome measures
we should reduce the transmissibility of the virus from
humans to animals to this low level. Reducing it to the low
level would significantly prolong the time to peak epidemic,
lower the epidemic size of the peak day, as well as the over-
all outbreak size in the SH population. Similar significant
beneficial effects of lowering the transmissibility of the virus
at the interface would be obtained even in the household
population. However, the transmissibility of the virus both
from animals to humans and vice versa had to be reduced
to the low level (LL). The lowering of the transmissibility of
the virus to the LL level also had the beneficial effect of
reducing the overall size of the epidemic in SWH popula-
tion. The positive implication of delaying the time to peak
epidemic day is that veterinary and public health authori-
ties would be provided with more time to mobilize
resources and implement appropriate disease response
measures, such as the delivery of antivirals, vaccination, or
other social distancing measures. Furthermore, reducing
the epidemic size on the peak day should reduce the burden
of disease control activities (such as movement control and
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vaccination in animals) including the burden on health care
facilities.

An important finding of this study is that it highlights
the crucial role the transmission dynamics of influenza at
the swine-human interface can play in influenza spread
between swine and human populations. It indicated that
opportunities exist to prevent or minimize the outbreak of
zoonotic influenza by lowering the transmissibility of the
virus at this interface. Transmissibility of the virus at the
swine-human interface can be minimized through various
mechanisms, including the following: good personal
hygiene, avoiding direct contacts with sick pigs, using
gloves and not smoking while working with pigs (Ramirez
et al., 2006), instructing swine workers to stay away from
work when suffering from influenza like illnesses, and fol-
lowing strict farm biosecurity measures. As significant dif-
ferences in the outcome measures were observed between
low and medium to high levels of the transmissibility, fur-
ther sensitivity analysis needs to be carried out between low
and medium range of values to determine the threshold
level at which a significant beneficial impact can be
achieved. It is recommended that studies are carried out to
quantify the percentage reduction in infection achieved
through these important preventive measures at the swine—
human interface to improve the parameterization of future
modelling studies.

The transmissibility of the virus at the swine-human
interface had little or negligible impact on the epidemic size
in the RH and UH populations. This might suggest that
once the infection has been introduced in the rural or
urban populations it would spread in these populations
independent of its spread at the swine-human interface,
given the relatively larger population sizes and higher con-
tact rates.

It is notable that despite reports of several outbreaks of
pHINI across the globe in both human and swine popula-
tions, and the heightened interest in gaining a better under-
standing of the transmission dynamics involved at the
swine-human interface, only one study was found that
reported transmission back from pigs to humans (Howden
et al., 2009). Furthermore, no study could be found that
reported the transmission of pHIN1 from one farm to
another, either through direct shipment of animals or indi-
rect contact (through movement of swine workers, veteri-
narians and other fomites). More representative studies to
estimate different stages of pH1IN1 or other influenza viral
infection at the farm level may provide useful information
to parameterize models in the future.

Significant beneficial effects on all the outcome mea-
sures were observed as the level of targeted vaccination of
SWH increased, though the most significant changes were
observed when 60% coverage was reached. These effects
were most evident in the SH and SWH populations and
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to a lesser extent in the RH population. Its effect was neg-
ligible on the proportion of UHs infected, likely for similar
reasons to those mentioned for the transmissibility above.
Within the model, we assumed that an effective vaccine
was available prior to the influenza outbreak. Questions
still remain as to whether such a vaccine would be readily
available during the emergent phase of a novel virus.
However, if a limited amount of such vaccine were to be
available early on in an outbreak, targeting swine workers
in cases where the virus was of swine origin should prove
beneficial. Future work could investigate effect of using
vaccine of lower efficacy developed from related strain of
the virus (offering cross-immunity), and the effects of vac-
cinating similar proportions of the rural and/or urban
populations.

Model assumptions, limitations and feasibility of
NAADSM

In common with other modelling studies in this domain, a
reasonable number of assumptions have to be made. While
some of these assumptions are implicit in NAADSM, others
were made due to the lack of information and/or for the
purpose of practicality of model implementation. In the
following section, we discussed these assumptions and/or
limitations of the model and how they impact on our
assessment of the feasibility of using NAADSM for model-
ling directly transmitted zoonotic diseases. In other words,
what could have been done, and how might that have influ-
enced our results and conclusions of this study.

NAADSM simulates diseases spread for a static and
closed population (that is no addition or removal of farms
or households occurs during the simulation, and unit sizes
are fixed throughout the simulation). However, this is a
reasonable assumption given that the duration of the simu-
lation chosen was 1 year (as opposed to a number of years),
and it is a most common assumptions made across in many
comparable studies. One of the main limitations imposed
by the design of NAADSM is the use of farms and house-
holds as the unit of simulation. While this is the most com-
mon approach to model livestock diseases at a farm level,
most modelling studies of human populations are simu-
lated at the individual person level. However, some studies
have suggested modelling disease spread at the household
level as a suitable alternative, especially for diseases such as
pandemic influenza (Ferguson et al., 2005; Longini et al.,
2005; Wu et al., 2006; Fraser, 2007). This level of aggrega-
tion has been justified on the basis that most influenza
transmission occurs within a household. In addition, it is
more practical and effective to target implementation of
both public health and pharmaceutical intervention mea-
sures at the household level and/or all households within a
zone of a certain radius, rather than at the individual level.
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We also assumed all units (farms or households) were
100% susceptible to the influenza virus. A corollary of the
limitation of using farm or household as the unit of simula-
tion is that once a single animal on a farm or a person in a
household become infectious, the entire unit itself is con-
sidered infectious. In reality, all animals on a farm may not
become infected, though studies have shown that the large
majority of animals do become infected during influenza
outbreaks in farms (Howden et al., 2009; OIE, 2009-2010;
Pasma and Joseph, 2010). Even the household secondary
attack rates of pHIN1 were estimated in the range of 13—
50% (Cauchemez et al., 2009; Ghani et al., 2009; Yang
et al., 2009; van Gemert et al., 2011). In addition, the prob-
ability of transmission is likely to be influenced by the
within-farm or within-household prevalence of disease, but
this effect was not accounted-for in the current study. The
effect of animal shipment size on the transmission proba-
bility for direct contacts between SH units was also not
considered. In reality, we would expect the transmission to
be influenced by both within-farm prevalence and ship-
ment size. These assumptions might have overestimated
the spread of the disease in the populations.

Theoretically, it is possible to simulate a disease spread at
the individual person level in NAADSM by making a size of
unit (‘herd/household’) as one and number of units equal
to a total population of an area, assigning location of units
among members of the same household in very close
geographic proximity, and using the ‘local area spread’
mechanism rather than direct contact. However, this will
be difficult to implement because of the huge number of
units and may increase the simulation time required con-
siderably. Therefore, simulation of a disease spread at the
household-level seems more appropriate, at least for conta-
gious diseases like influenza. Currently, there is paucity of
information on how long household remain infectious,
household to household transmission, contact rates among
households, which are required to parameterize household-
level model more accurately. A work similar to the one
reported by van Gemert et al. (2011) would be useful for
this purpose.

Another main limitation of NAADSM is that it is not
possible to assign more than a single location to each unit,
in contrast to some human disease spread models where an
individual can be assigned to two or more locations, such
as the home, school/workplace, community or other places
of social gathering (Haber et al., 2007; Das et al., 2008;
Milne et al., 2010; Ohkusa and Sugawara, 2009; Lee et al.,
2010b). However, simulating these locations explicitly in a
model is important only if a study is aimed at specifically
assessing the impact of these locations on the spread and
intervention measures of diseases. In addition, our model
could not incorporate the heterogeneities in terms of
social demographics such as age, gender, immunity status,
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occupations, etc. The contact rates, risk and susceptibility
to an infection may vary significantly among these vari-
ables, as was observed for pHIN1 (Cauchemez et al., 2009;
Yang et al., 2009; van Gemert et al., 2011). It is difficult to
predict the direction of bias due to lack of information on
these demographic values and disease transmission param-
eters. It is possible to incorporate social structure in the
model by using NAADSM’s feature for inclusion of differ-
ent species of animals or production types. However, this
would potentially result in a large number of pairs of
combinations between these variables.

Our model could not incorporate or explore the effect of
different contact network structure as the version of
NAADSM used in this study simulated disease spread as a
function of contact rate, transmission probabilities and
spatial distance (that is based on a spatial kernel with
higher probability of contact between infectious and sus-
ceptible units that are in close geographical proximity)
between source and recipient units. In actuality farms,
households or people only contact a fixed number of units
or individuals in a population, and units in close geograph-
ical proximity may not necessarily have any contact
between one another to facilitate the influenza spread.
Indeed, close spatial proximity between two units become
largely irrelevant unless a disease spreads locally through
aerosol transmission. Furthermore, contact networks in
both human and farm populations exhibit scale-free and/
small-world topologies (Dubé et al., 2008; Rahmandad and
Sterman, 2008; Buttner et al., 2013; Dorjee et al., 2013b);
characteristics which will influence the speed and extent of
disease spread in a population. In the absence of specific
contact network structures, the speed and extent of influ-
enza spread may have been underestimated in this study.
As this is one of the major limitations of NAADSM, future
version of it needs to incorporate flexibility to model differ-
ent contact network structures.

While some swine workers are likely to live in towns, we
were not able to assign SWH locations to be in town due to
the inability of NAADSM to incorporate such contact net-
work structures explicitly. As we artificially restricted the
geographic locations of SWH within a radius of 0.1-0.5 km
of SH and limited contact distance to a maximum of
0.5 km, this might have underestimated the spread between
SWH and other household types. However, we believe the
magnitude of the bias is likely to be small as the majority of
farms are family operated enterprises in this county (based
on co-authors informed judgment), and due to the fact that
swine workers spend most of the day on these farms. We
also assumed that swine workers work every day of the
week. While this may be true for family owned operators,
some swine workers will likely to take 1 or 2 days off, and
therefore, it is likely that we have overestimated the contact
frequency and thereby the disease spread.
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For simplicity, all swine farms were treated as a homo-
geneous population as we did not have information on a
number of different farm types and their contact parame-
ters. In reality, epidemic size and length of disease out-
break will likely vary by farm type (farrowing, grower,
finishing, etc.) as has been observed for classical swine
fever (Dirr et al., 2013). This might have biased the dis-
ease spread to a certain extent but the magnitude and
direction of bias could not be determined due to lack of
information on the contact and transmission parameters
between different production types. We also did not con-
sider the contacts between populations of the county
being modelled and neighbouring counties, which is not
realistic as some movements of infected and susceptible
populations between counties would be expected. Other
occupational groups such as veterinarians, abattoir work-
ers, and swine transporters, who come into contact with
swine, may play an important role in influenza spread but
these groups were not considered in this study. Therefore,
this would have underestimated the disease spread in the
populations.

Information on contact frequencies between SWH, RH
and UH were not available with assumptions being based
on the informed judgement of co-authors, which may have
introduced some bias in the estimates. Future works could
examine the effects of all these parameters on the modelled
spread of the virus through more extensive sensitivity
analysis.

The effect of seeding the infection randomly in a popula-
tion at different locations could not be assessed as the ver-
sion of NAADSM used in this study lacks this feature. It
would be expected that the speed and extent of spread
including stochastic ‘die-out’ fraction would be influenced
to a certain extent by the density of population around the
index unit. We could have manually selected few index
units randomly at different location to investigate this effect
but due to time constraints it could not be carried out.

Observations from this study suggest that NAADSM
provides a feasible platform for modelling directly trans-
mitted contagious zoonotic diseases between animal and
human populations under simplifying assumptions similar
to those adopted in this study. Overall, NAADSM pro-
vides a sophisticated, flexible and user-friendly software
platform. It is particularly useful to people with a biology
background who do not possess strong mathematical or
computer programming skills (as are typically required to
make appropriate use of other modelling software). Build-
ing model structures and specifying parameters relating to
transmission and control strategies can be easily achieved
within NAADSM as it requires only the specification of
parameter values in the form of fixed values, probability
density functions or relational functions. The software also
has features to generate graphs, summary statistics, and to
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compare outcomes across as a range of different scenarios.
Furthermore, NAADSM has features to assess all key inter-
vention strategies either alone or in combination. These
are relevant from a regulatory perspective but are equally
applicable to exploring issues relating to the public health.
Another limitation of the personal computer version of
NAADSM was the time taken to simulate the spread of
disease in populations of a significant size. Despite being
run on a relatively powerful personal computer the simu-
lation for this study (with 30 195 units) took 4 days to
complete 100 iterations. If NAADSM could be developed
further to address the limitations highlighted in this study,
its capability for modelling zoonotic diseases could be
greatly enhanced.

Conclusion

In conclusion, this is a unique one-health modelling study
which investigated the simultaneous spread of pHIN1 both
within and between swine and human populations. It pro-
vided useful insights into how manipulating the transmis-
sion dynamics of pHINT1 at the swine-human interface can
alter the spread of an influenza epidemic in swine and/or
human populations, and illustrated the beneficial effects of
targeted vaccination of swine workers. Minimizing trans-
missibility at the swine-human interface through appropri-
ate mechanisms including targeted vaccination should
form key components of all pandemic contingency mea-
sures for zoonotic influenza. This study also serves as a
benchmark for future studies to improve the modelling
approaches of zoonotic influenza including other directly
transmitted zoonotic diseases further through enhanced
surveillance and collection of quality information to
parameterize models accurately. This study also illustrated
that NAADSM is a feasible and relatively flexible platform
for modelling a spread of directly transmitted zoonotic
influenza between swine and human populations under
certain simplifying assumptions.
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