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 CURRENT
OPINION Malaria diagnosis for malaria elimination

Peter A. Zimmerman and Rosalind E. Howes

Purpose of review

Limitations of blood smear microscopy contributed to failure of the 1950–1960s WHO Global Programme
to Eliminate Malaria. All diagnostic methods encounter limits of detection (LOD) beyond which it will not be
possible to identify infected individuals. When this occurs, it becomes difficult to continue evaluating
progress of malaria elimination. The purpose of this review is to compare available diagnostic
technologies, factors that underlie their LOD, and their potential roles related to the goal of elimination.

Recent findings

Parasite-containing cells, parasite proteins, hemozoin, nucleic acids, and parasite-specific human
antibodies are targets of diagnosis. Many studies report advantages of technologies to detect these
diagnostic targets. Nucleic acid amplification tests and strategies for enriching capture of malaria
diagnostic targets have consistently identified a parasite reservoir not detected by methods focused on the
other biological targets. Exploiting magnetic properties of hemozoin may open new strategies for
noninvasive malaria diagnosis.

Summary

Microscopy and rapid diagnostic tests provide effective surveillance for malaria control. Strategies that
detect a reservoir of submicroscopic infection must be developed and standardized to guide malaria
elimination.
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diagnosis, elimination, limits of detection, malaria

INTRODUCTION

Five Plasmodium species cause human malaria infec-
tions, P. falciparum, P. vivax, P. malariae, P. ovale
(with subspecies curtisi and wallikeri [1]), and P.
knowlesi (zoonotic – Southeast Asian macaques
and humans [2]) and constitute targets of malaria
diagnosis. As all diagnostic methods have limits of
detection (LOD), this review will consider the status
of diagnostic methods to detect these species to
produce the data that will help National Malaria
Control Programmes (NMCPs) reach elimination. It
bears further mention that there are two parallel
diagnostic objectives within the malaria context:
first, point-of-care diagnosis for symptomatic
patients presenting at clinics; and second, quantify-
ing the parasite reservoir represented by asympto-
matic submicroscopic infections (SMI) that stands as
a barrier to achieving elimination. As this review
considers diagnosis for elimination, we are focused
on the second diagnostic objective of SMI. Malaria
diagnosis must be strengthened given the import-
ance of continuing progress against this disease and
the global investment in malaria elimination.
Methods for detecting human as opposed to

mosquito [3,4] or nonhuman primate malaria [5]
infections will be favored here. Aspects of malaria
diagnosis beyond the focus of this review include
monitoring antimalarial drug resistance markers
and developing products to assess glucose-6-phos-
phate dehydrogenase deficiency (G6PDd) to
improve safety of primaquine (and ultimately tafe-
noquine) treatment of P. vivax and P. ovale hypno-
zoites. The Worldwide Antimalarial Resistance
Network (http://www.wwarn.org) and recent publi-
cations by Domingo et al. [6] and Satyagraha et al. [7]
on testing for G6PDd provide excellent material on
these topics.
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MALARIA ELIMINATION CHALLENGES
MALARIA DIAGNOSIS

Malaria elimination aims at zero incidence of
transmitted infection in a defined geographical
area. Thus, elimination is focused on the capacity
of regional and national malaria programs and
awareness that climate, ecology, and socioeco-
nomic factors can impact transmission of this dis-
ease [8,9]. The WHO annual World Malaria Reports
(see the WHO WMR 2014 [10

&&

]) monitor country-
specific progress with estimates of populations at
risk of infection, clinical cases, and malaria
mortality. These reports also summarize NMCP data
on financial support to access the three basic com-
ponents of a malaria control toolkit: long-lasting
insecticide-treated bed nets (LLIN) to protect
against exposure to mosquito transmission; fast-
acting artemisinin combination therapies (ACTs);
and rapid diagnostic tests (RDTs) capable of detect-
ing malaria parasite proteins in the blood of
infected people.

Current progress against malaria follows a plan
similar to the WHO’s Global Programme to Elimin-
ate Malaria [11,12], and includes Control (Scaling
Up for Impact and Sustaining Control), Preelimina-
tion, Elimination, and Prevention of Reintroduction
[11] stages. Progress through these phases requires
regions to define areas of coverage, establish admin-
istration of service, and program evaluation mech-
anisms, provide assurances to confirm training of
central program to community-based workers and
document continuous availability of LLIN, ACTs,
and RDTs. Underscoring the importance of diagno-
sis, progress toward elimination is documented

by reduction of annual parasite incidence (API)
(Control areas: API �5 cases/1000 population; Pre-
elimination: API<5/1000; Elimination: API<1/
1000; Prevention of Reintroduction: zero locally
acquired cases; WHO Certification after three years
of sustained zero local transmission [10

&&

,13
&&

]). The
current status of the 106 malarious countries is
summarized below [10

&&

] (WHO regions: AFRO,
African Regional Office; AMRO, Region of the Amer-
icas; EMRO, Eastern Mediterranean Regional Office;
SEARO, South-East Asia Regional Office; WPRO,
Western Pacific Regional Office).

(1) Preelimination (n¼10): AFRO – Cabo Verde;
AMRO – Belize, Costa Rica, Ecuador, El Salva-
dor, Mexico, Paraguay; SEARO – Bhutan, North
Korea; WPRO – Malaysia.

(2) Elimination (n¼9): AFRO – Algeria; AMRO –
Argentina; EMRO – Iran, Saudi Arabia; EURO –
Azerbaijan, Tajikistan, Turkey; SEARO – Sri
Lanka; WPRO – South Korea.

(3) Prevention of reintroduction (n¼6): EMRO –
Egypt, Iraq, Oman; EURO – Georgia,
Kyrgyzstan, Uzbekistan.

(4) WHO certified malaria free since 2000 (n¼4):
EMRO – Morocco (2010), United Arab Emirates
(2007); EURO – Turkmenistan (2010), Armenia
(2011).

(5) Malaria Control (n¼77): [10
&&

].

As countries make progress against malaria, LOD
are reached for microscopy and RDTs before para-
sites are cleared from endemic populations. These
SMI have been validated and summarized in numer-
ous excellent reviews [2,14

&&

,15,16,17
&&

,18
&&

].
Furthermore, regional and national studies regularly
report SMI in many malaria-endemic regions when
diagnoses by microscopy/RDTs have been coupled
with more sensitive and specific nucleic acid
amplification (NAA) strategies (14 manuscripts in
6 months of 2015 alone: AFRO – 6 [19–24]; EMRO –
1 [25]; SEARO – 2 [26,27]; WPRO – 4 [20,28,29

&

,30
&

];
AMRO – 1 [31]). Although microscopy and RDTs
help to achieve goals of malaria control, and RDTs
have helped to significantly reduce widespread
overtreatment with antimalarial drugs [32], these
surveys indicate that malaria elimination (the
absence of all parasites) requires more sensitive
infection detection strategies to prevent trans-
mission [17

&&

]. With recognition that malaria elim-
ination must integrate research [11], diagnostic
technology advances must continuously optimize
stringent barriers (treatment and mosquito
exposure) against malaria transmission. Therefore,
with currently reported evidence of SMI in five of six

KEY POINTS

� Diagnosis is of central importance to malaria
elimination.

� Although microscopy and rapid diagnostic tests help to
achieve goals of malaria control, malaria elimination
requires more sensitive infection detection strategies to
prevent transmission.

� The nucleic acid amplification tests are solely
responsible for calling attention to submicroscopic
infections, a low-density, asymptomatic reservoir that
has potential to confound progress in malaria
elimination.

� Malaria diagnosis is currently limited by inefficiencies
in analyte preservation outside the laboratory and
reliance on invasive sample collection and insufficient
standardization required to eliminate uncertainty when
mapping elimination progress.

Malaria diagnosis for malaria elimination Zimmerman and Howes
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WHO regions, review of the WHO’s API thresholds
for elimination must be considered. Furthermore,
NMCP decisions to treat must be reviewed because
of the potential for SMI to contribute to sustained
malaria transmission [33].

MALARIA LIFE CYCLE AND GEOGRAPHY
IMPACT DIAGNOSIS
Figure 1 and Table 1 summarize the complex malaria
life cycle. Anopheles mosquitoes inject sporozoites to
initiate infection of human hepatocytes (pre-eryth-
rocytic infection – approximately, 2 weeks). Hep-
atocytes rupture to release merozoites that will

initiate erythrocytic infection; this stage results in
malaria symptoms. Blood stage parasites can cycle
many times back through red blood cells (RBCs), or
the parasites can differentiate into male and female
gametocytes ready for sexual reproduction after
being ingested into the mosquito midgut. The
resulting ookinete migrates through the midgut wall
and initiates asexual replication to form a new brood
of sporozoites that will become positioned in the
mosquito salivary glands ready for release into
another human host. Parasites are detectable during
infection of RBCs and mosquitoes. Sporozoites
through liver stages are refractory to detection. Life

Life cycle of the
malaria parasite

HEPATIC STAGE

BLOOD
STAGE

MOSQUITO
STAGE

*Parasite detection
possible

*Parasite detection
possible

FIGURE 1. Malaria life cycle impact on diagnosis. Quantitative differences among the five malaria species [P. falciparum (Pf),
P. vivax (Pv), P. malariae (Pm), P. ovale (Po), P. knowlesi (Pk)] during pre-erythrocytic and erythrocytic stages affect the
composition of infected blood samples. Numbers of merozoites from infected hepatocytes can range from 2000 in Pm to
30 000–40 000 in Pf. Erythroid target cells (approximately, 5 x 106 RBCs/ml) of Pf and Pk include all RBCs. Pm preferentially
infects mature RBCs. Pv and Po infect reticulocytes (0.5�1.5% of the RBC population). The RBC infection cycle is 24 h for Pk,
48 h for Pf, Pv, and Po, and 72 h for Pm. Target-cell availability and duration of the RBC infection can influence average blood
stage parasitemia [Pf¼20 000–500 000 infected red blood cells (iRBC)/ml; Pv¼20 000 iRBC/ml; Pm¼6000 iRBC/ml;
Pk – 600–10 000 iRBC/ml].

Tropical and travel-associated diseases

448 www.co-infectiousdiseases.com Volume 28 � Number 5 � October 2015



 Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

cycle and geographic characteristics of Plasmodium
species that further influence malaria diagnosis are
as follows:

(1) P. vivax and P. ovale produce dormant liver
stages, hypnozoites, that initiate new RBC infec-
tions independent of mosquito transmission.
Hypnozoites are currently invisible to diagnosis.

(2) All malaria parasites digest hemoglobin and
crystalize bioreactive heme into hemozoin, a
paramagnetic substance that aggregates during
development inside infected RBCs (iRBCs) [34].

(3) P. falciparum trophozoites through schizonts
(�75% of iRBCs) sequester in the peripheral
vasculature [35]. Sequestration of other human
malaria species is poorly understood.

(4) Variable numbers of merozoites are present in
iRBCs [36–38].

(5) P. falciparum and P. vivax are often coendemic
globally [39,40], whereas P. knowlesi is a zoo-
notic infection of humans and macaques in
Southeast Asia [41]. Although travelers have
become infected there are no reports of
human-to-human transmission beyond this
region [42

&

].

Plasmodium species-specific features can influ-
ence the cellular and molecular content available for
malaria diagnosis. Furthermore, coinfections of
multiple species complicate malaria diagnosis in
rural field settings and in very well resourced labora-
tories.

TARGETS OF MALARIA DIAGNOSIS
The cellular targets of malaria diagnosis in humans,
therefore, include iRBCs or leukocytes that have
ingested parasites. Detectable analytes (chemical
constituents) include nucleic acids, antigens, and
hemozoin. Additional analytes include human anti-
parasite antibodies. For elimination, it is important
to identify and treat malaria-positive individuals
before parasites can be transmitted [17

&&

,43], ideally
before symptoms and gametocyte production. Diag-
nostic targets of infection that linger beyond the
duration of infection (parasite antigens or parasite-
specific human antibodies) would contribute to
false-positives and potential treatment of unin-
fected people. Conversely, analytes that decrease
significantly during infection (missing low parasite-
mia or sequestered P. falciparum) would contribute
to false negatives and fail to identify parasites ready
to sustain transmission. Markers of greatest utility to
malaria elimination are those that accurately reflect
the biomass, species composition, and transmissi-
bility of parasites comprising individual infections
[17

&&

]. Parasite polymorphism in any molecular
assay targets would alter diagnosis.

MALARIA DIAGNOSTIC TECHNOLOGIES
AND LIMITS OF DETECTION
LOD vary inherently across technologies
(Table 2), but factors that further influence detec-
tion capacity include functioning reagents/
materials across all sample collection, storage,
processing and diagnostic assay steps, operator

Table 1. Life cycle biology influencing human malaria diagnosis

Characteristic
Plasmodium
falciparum

Plasmodium
vivax

Plasmodium
malariae

Plasmodium
ovale

Plasmodium
knowlesi

Merozoites/hepatocyte 40 000 10 000 2000 15000 10000

Dormant hypnozoites No Yes No Yes No

Erythrocytic cycle (hours) 48 48 72 48 24

Erythrocyte target cells All RBC Reticulocytes Mature RBC Reticulocytes All RBC

Merozoites/iRBC

Minimum (ring)a 1b 1 1 1 1

Maximum (schizont) 32–36 18–20 10–12 12–18 14–16

Parasitemia/ml

Average/range 50 000–500,000 10 000–20 000 6000 9000

Maximum 2 500 000 100 000 20 000 30000 800000

Submicroscopic infections Yes Common Common lasting years Common Yesc

Geographic range Global/Tropics Global/Temperate Global/Temperate Global/Temperate SE Asia/zoonosisd

iRBC, infected RBC; RBC, red blood cells.
aiRBC may include occurance of multiple ring stage parasites.
bSequestration of trophozoites through schizonts.
cMorphology with P. malariae is similar, parasitemia can increase rapidly.
dZoonosis involving humans and macaques (long-tailed and pig-tailed) found in Southeast Asia – see [2].
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proficiency, sample quality, and sample volume.
The blood volume analyzed constrains diagnosis
significantly; 5 ml (RDT sample) to 200 ml (DNA
sample) are extremely small portions of the average
adult blood volume (5–6 l).

Microscopy and cytometry
Conventional blood smear microscopy [44] typi-
cally evaluates a fraction of 1 ml of whole blood (thin
smears 1.25�105 RBCs; thick smears 1.0�106 RBCs
[45]) and encounters LOD between 5 and 200 iRBCs
per ml depending on laboratory facilities and exper-
tise (Table 2). Microscopy enables identification of
individual species and developmental stages, how-
ever, as parasitemia decreases and/or an infection is
comprised of multiple species, the accuracy of diag-
nosis can be challenging even to expert microscop-
ists [46]. Manipulating blood after sample collection
by exposure to magnetic fields enriches capture of
iRBCs [47,48] resulting from the presence of hemo-
zoin. By this approach, 100 ml of blood can be
screened (5�108 RBCs) increasing the total capture
of iRBCs from 10-fold to 100-fold [47] and magnetic

capture begins to rival NAA sensitivities. Further,
hemozoin-containing monocytes observed by
microscopy may provide insight regarding the total
body parasite burden, as these cells do not sequester
in P. falciparum infections [49,50]. Flow cytometric
devices may also contribute new approaches for
malaria diagnosis with emphasis on field deploy-
ment, however, further development of instrumen-
tation is required [51–55]; limitations of species-
specific detection must be acknowledged for flow
cytometry.

Antigen-based rapid diagnostic tests
Over 200 RDT products from over 30 different man-
ufacturers have been evaluated by the WHO and
Foundation for Innovative New Diagnostics (FIND)
and other malaria elimination stakeholders [56

&&

].
Operational detection thresholds have been set at a
lowdensity of 200 parasites/ml and a higher density of
2000–5000 parasites/ml [56

&&

]; the approximate RDT
LOD is equivalent to 200 iRBCs/ml of blood (Table 2).
RDTs detect P. falciparum histidine-rich protein II
(PfHRP2), Plasmodium lactate dehydrogenase and

Table 2. Limit of detection of a single infected red blood cell (5�106 RBC/ml; 8�103 WBC/ml)

iRBC/µL Parasitemia

50,000

5,000

500

1.00000000%

0.10000000%

0.01000000%

50 0.00100000%

5 0.00010000%

0.5 0.00001000%

0.05 0.00000100%

0.005 0.00000010%

0.0005 0.00000001%

Average
Microscopist
>100 iRBC/µL

Microscopy RDT-Antigen Nucleic Acid Hemozoin

FIND Assay
Performance

2000 to
200 iRBC/µL

18S rRNA
mtDNA
Stevor

TARE-2

Whole Blood
5 to

0.5 iRBC/µL

Magneto-
Optical

10-40 iRBC/µL

MDM
Whole Blood

0.5 to
0.05 iRBC/µLConcentrated

Whole Blood
0.05 to

0.005 iRBC/µL

Expert
Microscopist

≥5-10 iRBC/µL

iRBC, infected RBC; RBC, red blood cells; RDT, rapid diagnostic test.
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aldolase [56
&&

]. Although they identify P. falciparum,
specifically, RDTs have no species-specific capacity to
identify all five malaria species and cannot provide
information on developmental stages. As these
methods have not been coupled with strategies for
concentrating parasite protein from the blood prior
to analysis, they are limited by the 5 ml sample vol-
ume applied to the RDT cartridge. Further compli-
cations linked to RDTs have arisen through reported
false-positive and false-negative results systemati-
cally reviewed through the WHO–FIND collabor-
ation [56

&&

]. False-positive results are associated
with persistence of PfHRP2 in peripheral blood, cross
reactivity against human rheumatoid factor, and
other infectious diseases [56

&&

,57,58]. False-negative
RDT results are associated with deletions of pfhrp2
and pfhrp3 genes [59]. Cheng et al. [60

&&

] reported,
however, that PfHRP2-detecting RDTs are effective
for routine clinical case management in most
malaria-endemic regions. When PfHRP2 deletion
prevalence is greater that 10% in a region PfHRP2-
detecting RDT usage is discouraged [61].

Nucleic acid amplification tests
NAA tests [14

&&

,62,63], most often PCR-based, are
able to identify individual species but not develop-
mental stages. These methods are also considered to
be lab-bound. Despite these limitations, NAA tests
are now acknowledged to be more sensitive in detec-
tion of malaria parasites compared with microscopy
and RDTs [64]. The NAA tests are solely responsible
for calling attention to SMI [15,65], an asympto-
matic reservoir that has potential to confound prog-
ress in malaria elimination [66]. Accumulating
assessments now suggest that the proportion of
SMI is, approximately, 20% of infections in areas
of high transmission intensity (communities with
parasite microscopy prevalence�75%) but increases
to 70–80% of infections in areas of low transmission
intensity (wherein microscopy prevalence is <10%)
[15].

The LOD for NAA tests are at least two to four
orders of magnitude lower than microscopy and
RDTs (virtually all NAA strategies are able to detect
0.05–5 iRBCs/ml of blood; Table 2). Early NAA tests
focused on detecting the 18S ribosomal RNA gene
sequences (DNA template), present in 5–10 copies
per Plasmodium genome. These sequences were
either amplified using species-specific primers with
products visualized following gel electrophoresis, or
by genus-specific PCR amplification followed by
post-PCR methods to distinguish species [67,68].
Plasmodium species NAA assays have expanded to
target additional gene sequences [including the P.
falciparum stevor multigene family [69], mitochon-
drial DNA (mtDNA) [70], and telomere-associated

repetitive element 2 (TARE-2) [71] sequences and P.
vivax Pvr64 sequences [72] and mtDNA [70]. Assays
targeting stevor, TARE-2 and Pvr64 are limited by
their single species focus; 18S rRNA gene and
mtDNA [20] assays are developed to identify all
human malaria species]. Assay development focused
on these sequences theoretically improves infection
detection beyond assay formats that target 18S rRNA
gene sequence due to increased copy number
(stevor, 30–40 copies/parasite genome [69]; mt cytb,
30–100 copies/iRBC [70]; TARE-2,250 copies/para-
site genome [71]). With a 100-fold increase in target
sequence it is possible that the LOD could reach
0.005–0.05 iRBCs/ml or 1–10 iRBCs/200 ml of blood
(Table 2) [73] as this very small number of iRBCs
would be releasing hundreds of copies of the target
DNA sequence into the final 200 ml volume of puri-
fied genomic DNA and just one template sequence
would be needed to drive the NAA reaction.

Additional NAA strategies that have been shown
to improve sensitivity of molecular diagnosis
include amplification of expressed nucleic acid
sequence (RNA template) and concentration of
RBC away from serum and WBC of whole blood.
Expressed nucleic acid compared with genomic
DNA benefits from parasite amplification of target
sequence 1000 to 3500-fold. This increase in nucleic
acid template concentration would push the LOD to
0.0005–0.005 iRBCs/ml or 1–10 iRBCs/2 ml of blood
(Table 2). To fully implement this increased capacity
for detection requires RBC concentration strategies.
Concerns that discourage RNA-based infection
detection include the lability of RNA compared with
the durability of DNA. RBC concentration strategies
have been implemented in the context of malaria
diagnosis in field-based malaria elimination [74

&

]
and in the context of clinical trials [75

&

]. Nucleic
acid extraction performed on the RBC fraction from
1 ml of whole blood (approximately, 5�109 RBCs)
would enable surveillance 0.2% of the adult
blood volume. Increasing the availability of nucleic
acid template has facilitated successful pooling of
patient samples to accelerate sample processing
[30

&

,71,76,77] that will be called for as malaria elim-
ination requires increasing surveillance. Finally,
loop-mediated isothermal amplification exhibits
potential to release NAA from the laboratory and
enable highly sensitive, NAA malaria diagnosis in
remote healthcare settings [72,78]. Additionally,
recent advances with lab-on-chip [79] and nonin-
strumented nucleic acid amplification [23] strat-
egies advance promise for NAA point-of-care testing.

EMERGING MALARIA DIAGNOSTICS
A number of recent studies have reported on strat-
egies to exploit physical and/or electromagnetic
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features of hemozoin crystals to detect infection by
malaria parasites [54,80–86]. Generally, the LOD of
these methods is between 1 and 30 iRBCs/ml and,
therefore, not as sensitive as NAA strategies. How-
ever, as these methods claim to rely on inexpensive
and portable technologies, there is potential that
they may contribute to more efficient and sensitive
point-of-care malaria diagnostic strategies with fur-
ther optimization. Finally, more recent work from
Lukianova-Hleb et al. [87,88

&&

] describes a noninva-
sive method for detecting hemozoin. These authors
indicate that hemozoin specificity for malaria and
the susceptibility of this nanocrystal to optical exci-
tation by laser pulse generates expansion and col-
lapse of a vapor nanobubble. The resulting pressure
pulse is easily detected through the skin with an
ultrasound sensor. Preliminary studies in mice, one
human infection, and mosquitoes have provided
results that demonstrate a noninvasive strategy
for malaria diagnosis.

CONCLUSION

Malaria elimination will require very sensitive infec-
tion detection and capacity to process extremely
large sample quantities. Malaria diagnosis is cur-
rently limited by inefficiencies in analyte preser-
vation outside the laboratory and reliance on
invasive sample collection and insufficient
standardization [89] required to eliminate uncer-
tainty when mapping elimination progress [90

&

].
New technology would need to match or surpass
the superior sensitivity of NAA methods.
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